
,.FL. copy

RADC-TR-89-317
Final Technical Report AD-A220 116
January 1990

SOFTWARE QUALITY MEASUREMENT
METHODOLOGY ENHANCEMENTS
STUDY RESULTS

Rochester Institute of Technology

Jeffrey A. Lasky, Alan R. Kaminsky, Wade Boaz , DTIC
SELECTV
APR03 1990

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

90 O 03 069

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-89-317 has been reviewed and is approved for publication.

APPROVED:

ROGER B. PANARA
Project Engineer

APPROVED:

RAYMOND P. URTZ, JR
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COEE) Griffiss AFB NY 13441-5700. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific doucment require that it be returned.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMFNo, 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release;

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE distribution unlimited.
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-89-317

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Rochester Institute (If applicable)

of Technology Rome Air Development Center (COEE)
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
One Lomb Memorial Drive
P 0 Box 9887
Rochester NY 14623-0887 Criffiss AFB NY 13441-5700

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Rome Air Development Center COEE F30602-81-C-0193
8c. ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO NO NO ACCESSION NO
Griffiss AFB NY 13441-5700 62702F 5581 20 P5

11. TITLE (Include Security Classification)

SOFTWARE QUALITY MEASUREMENT METHODOLOGY ENHANCEMENTS STUDY RESULTS

12. PERSONAL AUTHOR(S)

Jeffrey A. Lasky, Alan R. Kaminsky, Wade Boaz
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Final IFROM Dec 87 TO Mar 9 January 1990 150

16. SUPPLEMENTARY NOTATION

17. COSATI CODES ,8. SUBJECT TERMS (Continue on reverse if necessarr entify by block number)
FIELD GROUP SUB-GROUP Software quality, . - -

12 05 Software quality metrics

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The four (4) tasks and their results performed under this stufy are: 1. Perform a critical
analysis of the RADC Software Quality Measurement Methodolog 3 _Methodology is complex. The
specification process should be modified. 2. Vetermine if IKFSC Management and Quality
Indicators can be integrated into the RADC methodology Three (3) of the Quality Indicators
can be integrated' '3. Review completeness of Methodology Traceability through software
life cycle phases i- In general, traceability is present. 4. --Create a cross reference guide
between Methodology life cycle phase metrics and applicable DOD-STD-2167A DIDs paragraphs;
A cross reference matrix was developed; however,many problems exist and recommendations are
made to alleviate the problems,

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
rUNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Roger B. Panara 1,(315) 330-3655 RADC (COEE)

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

TABLE OF CONTENTS

I. EXECUTIVE SUMMARY
1. INTRODUCTION ... I-1
2. BACKGROUND .. I-1
3. OBJECTIVES .. 1-2

3.1 Initial work scope .. 1-2
3.2 Relationship to other related efforts and activities 1-3
3.3 Revised work scope and deliverables ... 1-4

4. OVERVIEW OF CONTRACT RESULTS .. 1-4
4.1 Organization of the Report ... 1-4
4.2 Elements of a Software Quality Compliance Model 1-4
4.3 Study of the Software Quality Specification Process 1-5
4.4 Study of AFSC Management Indicators .. 1-5
4.5 Study of Metric Question Traceability .. 1-6
4.6 Study of the Relationship Between Metric Data Collection and 2167A 1-6

5. SUMMARY ... 1-7
6. REFERENCES ... 1-7

II. ELEMENTS of a SOFTWARE QUALITY COMPLIANCE MODEL
1. INTRODUCTION ... 11-1
2. AGGREGATE SCORING VERSUS REQUIREMENTS COMPLIANCE 1-1
3. A SOFTWARE QUALITY COMPLIANCE MODEL ... 11-2

3.1 Quality Factor Specification .. 11-2
3.2 Evaluation of Achieved Quality .. 11-2

4. ASSESSMENT ... 11-3
4.1 Advantages ... 11-3
4.2 Disadvantages ... 11-4

5. CONCLUSION .. 11-4

III. STUDY of the SOFTWARE QUALITY SPECIFICATION PROCESS
1. INTRODUCTION .. i- 1
2. THE CURRENT SOFTWARE QUALITY SPECIFICATION PROCESS 111-2

2.1 Automated Tools and the Methodology .. 111-2
2.2. Software Quality Factors ... 111-2
2.3 Setting Quality Factor Goals ... 111-3
2.4 Complementary Factor Interrelationships .. 111-4
2.5 Positive and Negative Factor Interrelationships 111-4
2.6 Cost Analysis .. 111-4
2.7 Criteria and Metric Question Weighting .. 111-5
2.8 Numerical Factor Goals .. 111-5

3. OVERVIEW OF THE RECOMMENDED PROCESS I-6
4. DETAILS OF THE RECOMMENDED PROCESS .. 111-8

4.1 Eliminate Factors .. 1-8
4.2 Set Quality Factor Goals ... 111-9
4.3 Analyze Technical Risk .. I-9 0

4.3.1 Factor Interrelationships .. 111-9
4.3.2 Software Quality Technical Risk Analysis Procedure II-11

4.4. Analyze Cost Risk .. Il-11
4.4.1 The Intermediate COCOMO Model .. 111-12
4.4.2 Rationale for the Software Quality Cost Analysis Approach 111-13

too)is Special

4.4.3 Software Quality Cost Risk Analysis Approach 111-14
4.4.4 Example ... 111-15

4.5 Assess Overall Risk ... 111-16
4.6 Define Criteria and Metric Questions and Weights II-17
4.7 Assign Numerical Factor Goals ... 111-18
4.8 R esults .. 111-18

5. REFERENCES ... 111-18

IV. STUDY of AFSC MANAGEMENT INDICATORS
1. INTRODUCTION ... IV-1
2. PHILOSOPHY ... IV-2

2.1 Similarities and Differences .. IV-2
2.2 Indicators' Philosophy ... IV-2
2.3 Methodology's Philosophy .. IV-3
2.4. Summary .. IV-5

3. COMBINING THE INDICATORS AND THE METHODOLOGY IV-5
3.1 Advantages of a Combination ... IV-5
3.2 Approach to a Combination .. IV-6
3.3 Rationale For This Approach .. IV-7

4. CALCULATING THE SOFTWARE PRODUCT INDICATORS............................. IV-8
4.1 Completeness .. IV-8

4.1.1 Completeness Component C1 .. IV-9
4.1.2 Completeness Component C2 .. IV-9
4.1.3 Completeness Component C3 ... IV-10
4.1.4 Completeness Component C4 ... IV-10
4.1.5 Completeness Component C5 ... IV-11
4.1.6 Completeness Component C6 ... IV-I1
4.1.7 Completeness Component C7 .. IV-12
4.1.8 Completeness Component C8 ... IV-13
4.1.9 Completeness Component C9 .. IV-13
4.1.10 Completeness Component C10 ... IV-13
4.1.11 Final Completeness Indicator Value .. IV-14

4.2 Design Structure ... IV-14
4.2.1 Design Structure Component DI ... V-14
4.2.2 Design Structure Component D2 ... IV-14
4.2.3 Design Structure Component D3 .. IV-15
4.2.4 Design Structure Component D4 .. V-15
4.2.5 Design Structure Component D5 ... IV-16
4.2.6 Design Structure Component D6 ... V-17
4.2.7 Final Design Structure Indicator Value IV-17

4.3 Documentation ... IV-18
4.3.1 Changes to Existing Metric Questions for Documentation Indicators... IV-18
4.3.2 New Metric Questions for Documentation Indicators IV-20
4.3.3 New Metric Questions for Source Listing Indicators IV-21
4.3.4 Final Documentation Indicator Value IV-22

5. CALCULATING THE SOFTWARE PROCESS INDICATORS IV-22
5.1 Computer Resource Utilization IV-22
5.2 Software Development Manpower .. IV-23
5.3 Requirements Definition and Stability .. V-23
5.4 Software Progress-Development and Test ... W-24
5.5 Cost/Schedule Deviations .. IV-24
5.6 Software Development Tools .. V-24
5.7 Defect Density ... IV-24

ii

5.8 Fault Density ... V-24
5.9 Test Coverage ... IV-25
5.10 Test Sufficiency ... IV-25

6. SUMMARY OF ERRORS IN THE INDICATORS ... IV-25
7. SUMMARY OF RECOMMENDED METHODOLOGY CHANGES IV-25
8. REFERENCES ... IV-27

V. STUDY of METRIC QUESTION TRACEABILITY

1. INTRODUCTION ... V-1
2. TRACEABILITY CONCERNS ... V-1
3. RATIONALE FOR METRIC QUESTION GAPS V-2

3.1 Software Quality Addressed By Technical Reviews V-2
3.2 Software Quality Addressed By Implementation Standards V-2
3.3 Hardware Issues .. V-3
3.4 Miscellaneous Metric Question Gaps ... V-3

VI. STUDY of the RELATIONSHIP BETWEEN METRIC DATA
COLLECTION and 2167A

1. INTRODUCTION ... VI-1
2. ANALYSIS GUIDELINES ... VI-
3. FINDINGS and RECOMMENDATIONS .. VI-2

3.1 Findings .. V I-2
3.2 Recommendations ... VI-3

4. INTRODUCTION to the CROSS REFERENCE GUIDE VI-3
4.1 Organization of the Cross Reference Guide .. VI-3
4.2 Explanation of Column Headings ... VI-3

5. REFERENCES ... VI-5

APPENDIX A

CROSS REFERENCE GUIDE

FIGURES

1. Recommended Software Quality Acquisition Process ... 111-7

2. Quality Factor Interrelationships ... 111-10

TABLES

2- 1. Summary of Indicators' and Methodology's Philosophies IV-5

Iii

SECTION I

EXECUTIVE SUMMARY

1. INTRODUCTION

This technical report presents results of the Software Quality Measurement Methodology
Enhancement Study. This work was performed for Rome Air Development Center (RADC) by
Rochester Institute of Technology (RIT) under contract no. F30602-81-C-0193.

2. BACKGROUND

The focus of this 12 month effort was to continue work on the software quality measurement
methodology which has been under development by RADC since 1976. Most of the current
RADC sponsored software quality efforts, including this study, are extensions or enhancements of
the methodology as set forth in a three volume set of guidebooks developed by Boeing Aerospace
Company and published in early 1985 [1]. Volumes II and III of the guidebooks provide the
software acquisition manager with guidelines for the quantitative specification and evaluation of
software quality. The software life-cycle phases and terminology used in the guidebooks was
consistent with the December, 1983 version of DOD-STD-SDS (DOD-STD-2167).

After the publication of the guidebooks, RADC sponsored three guidebook validation projects.
These projects were undertaken in the 1985-1987 time period. The purpose of these projects was
to assess the feasibility and utility of transitioning the software quality measurement methodology
to the software acquisition environment [2,3,41. Each of these validation projects generated
numerous recommendations for modifications to the methodology and to the guidebooks.

In 1986 and 1987, Air Force Systems Command (AFSC) developed a measurement-based
approach to help manage the process of software development [5,6]. These process metrics were
designed for high-level process management in contrast to RADC's more detailed level product
management metrics.

In early 1988, DOD issued the A revision of DOD-STD-2167 [7]. Of particular relevance to the
study reported here, most of the software quality requirements which were contained in DOD-
STD-2167 were not carried forward into DOD-STD-2167A. Instead, a separate software quality
standard, DOD-STD-2168, was also issued in 1988 [8].

Throughout 1988, several meetings of the Software Quality Methodology Working Group were
held. The members of the working group were primarily RADC contractors who had ongoing
efforts in the software quality measurement program. The general purpose of the these meetings
was to facilitate exchange of technical information and to provide a mechanism for coordination of
related efforts. A specific focus of the Working Group was to review the large set of issues and
recommendations generated by prior related work and then to resolve these items by defining a
baseline version of the methodology. The results of the Working Group's meetings are found in
[9]. Organizations represented in the Working Group included Computer Science Innovations,
Inc. (CSI), the Data and Analysis Center for Software (DACS), Dynamics Research Corporation
(DRC), Illinois Institute of Technology Research Institute (IITRI), RADC, RIT, Scientific
Applications International Corporation (SAIC), Software Productivity Solutions, Inc. (SPS), and
US Army Communications-Electronics Command (CECOM).

I-1

3.2. Relationship to other related efforts and activities

As we began our work, it soon became apparent that some of our efforts would be subsumed
within larger efforts, while other assigned tasks would be precluded by other factors. This section
discusses the impact of these factors on our initial work scope.

Our participation in the Software Quality Methodology Working Group, noted above, impacted
tasks 1(a) and 1(b). Since the Working Group assumed a broad perspective in reviewing the
methodology, and since the authors of the three validation studies were members of the Working
Group, we believed it would be most efficient for us to provide our evaluations in the context of
the Working Groups activities. Accordingly, this report includes a study on an area not considered
by the Working Group, namely the Guidebook Volume II processes which implement the software
quality specification component of the methodology. Also included is a first description of a
significantly different and alternative view of the methodology. Our recommendations, related to
the other issues in 1(a) and 1(b),are included in [9].

The issuance of DOD-STD-2168, Defense System Software Quality Program, impacted tasks 2(a)
and 2(b). The purpose of this standard "is to establish requirements for a software quality program
to be applied during the acquisition, development, and support of software ststems" [8, p.l.
DOD-STD-2167, issued prior to DOD-STD-2168, reflected software quality concerns. These
quality concerns were either largely eliminated or substantially subordinated when DOD-STD-
2167A was issued, since work on DOD-STD-2168 was nearly complete. Thus, it was no longer
necessary to pursue tasks 2(a) and 2(b). In addition, the degree of generality, which we believe
was ill-advised, incorporated in the wording of DOD-STD-2167A, would have made problematical
the task of writing specifc, unambiguous metric questions intended to be consistent with
DOD-STD-2167A.

3.3. Revised work scope and deliverables

Based on the discussion in section 3.2, our activities were focused on the following:

1. Enhance the software quality measurement methodology by:

(a) presenting a new view of the methodology which can be considered as either
complementary to or as an alternative to the classical view of the methodology. This view
is outlined in Section II, Elements of a Software Ouality Compliance Model.

(b) examining the Guidebook Volume II processes which implement the software quality
specification component of the methodology. Our recommendations for modifying the
Volume II processes are contained in Section III, Study of the Software Ouality
Specification Process.

(c) determining to what extent and how the AFSC software management and software quality
indicators should be integrated into the methodology . Our analysis and approach is
contained in Section IV, Study of AFSC Management Indicators.

2. Insure that traceability of metric questions is maintained under DOD-STD-2167A by reviewing
the traceability of the methodology's metric questions across the DOD-STD-2167A lifecycle.
Our analysis i-, contained in Section V, Study of Metric Ouestion Traceability.

3. Improve the ease of use and cost effectiveness of implementing the methodology by developing
a cross-reference guide which indicates the DOD-STD-2167A DID information source, if any,
for each of the metric questions. Our cross-reference guide is contained in Section VI, Sj~x
of the Relationship Between Metric Data Collection and 2167A.

1-3

4. OVERVIEW OF CONTRACT RESULTS

4.1. Organization of the Report

Due to the wide scope of the investigations conducted under this contract, we decided to organize
this report as a series of separate studies, each with its own introduction and set of references.
None of the studies makes reference to any of the other studies. However, the first two studies
discussed below in sections 4.2 and 4.3 are in friendly opposition; this state of affairs requires a
brief explanation. The purpose of our investigations was to make recommendations concerning the
enhancement of the methodology as described in the guidebooks. We followed this direction in
our Study of the Software Quality Specification Process (and in all of the following studies as
well). However, based on our initial and continuing review of the methodology, and our review
of related work being conducted in parallel, we concluded that interjection of a new perspective
was timely and potentially valuable. Thus, the reader should consider our too brief remarks in
Section II about a quality compliance model separate from the remainder of the report.

Following are summaries of the results of our studies

4.2. Elements of a Software Quality Compliance Model

The RADC software quality measurement methodology is based on a 3 level hierarchial model.
The top level is a set of customer-oriented software quality factors. The second level is a larger set
of defining attributes for the software quality factors. These are termed software quality criteria
and reflect technical considerations of good software engineering and development practice. The
third level is a still larger set of software quality metrics which are believed to be valid component
measures of the software quality criteria. The software quality metrics in turn are defined by lower
level metric elements.

Guidebook Volume II provides a methodology for specifying software quality goals. The end
result of the specification process is a set of quantitative goals for each of the top level software
quality factors. Guidebook Volume HI provides a methodology for evaluating achieved levels of
software quality for intermediate and final software products. The evaluation is based on answers
to the low level metric element questions. Most of these questions generate values of 1 if Yes and
0 if No. These values are then aggregated to generate metric scores which are in turn aggregated to
generate criteria scores. The criteria scores are then aggregated to generate the factor scores which
are compared to the factor goals. We have termed this approach the Software Quality Aggregate
Scoring Model.

From the academic point of view, we are concerned that the compound effects of score averaging,
weighting and aggregation will hinder efforts to validate this model. Also, we believe parts of the
methodology are unnecessarily complex relative to the goal of improving the quality of delivered
software. Our research contractor colleagues agree with this assessment. Unfortunately,
demonstrated validity will be a critical success factor in the eventual acceptance of the methodology
by the contracting community. Our concerns over this matter have lead us to propose a more
simple and focused model we have named the Software Quality Compliance Model.

The key idea for the compliance model was suggested by work done at Hughes Aircraft Company
by Deutsch and Willis [I l]. They asserted that the Guidebook Volume III metric questions should
be rephrased in terms of testable requirements. With this perspective in mind, we conceptualized a
two-level model by eliminating the middle level criteria level from the RADC model. The top level
quantitative factor goals are replaced by a set of required (mandatory) software features. The
extent of the features required for a given quality factor is dependent on the desired quality level for
that factor. Assessment of achieved quality is a matter of determining the percentage of required
software features actually implemented. Hence, the term compliance model. We also see a real

1-4

need to provide a technical assessment of implementation (source code) quality. We envision this
being accomplished automatically by a quality-oriented source code analyzer.

4.3. Study of the Software Quality Specification Process

Guidebook Volume II provides a methodology for specifying software quality goals. We believe
the specification methodology should be simplified and then recast within the framework of AFSC
Pamphelt 800-45, Software Risk Management.

A summary of our analysis is as follows. The current software quality specification process is too
detailed and is not validated. It is too detailed because it requires specifying separate software
quality factor goals for each identified software function, whereas we believe it is more appropriate
to specify overall system quality factor goals or, at most, CSCI-level quality factor goals. It is also
too detailed in that the system acquisition manager must devote significant amounts of time to
determine what are meant to be broad quality goals; the amount of work required is out of
proportion with the scope and accuracy of the results. The current process is also unvalidated. In
particular, the negative factor interrelationships and incremental quality factor costs are based only
on opinions and experience, not on actual real-world project data.

A summary of our recommendations is as follows. The software quality specification process is
simplified by specifying quality factor goals at the system level, or at most the CSCI level. The
process is also simplified by eliminating the tailoring of metric and criterion weights; all metric
questions for a criterion and all criteria for a factor are weighted equally. The feasibility of meeting
all the quality factor goals is studied as part of a risk analysis, which we recommend be conducted
in accordance with AFSC Pamphlet 800-45, Software Risk Management. Software quality risk
has two components: technical risk and cost risk. We suggest that the technical risk assessment be
based on a simplified analysis of negative factor interrelationships. We also suggest that the cost
risk assessment be based on an analysis of incremental costs derived from the COCOMO software
cost model, which is a validated model based on real-world data. The software quality risk
becomes one part of the overall risk analysis and may be handled in various ways, including
assuming the risk and making no changes in the quality factor goals, or avoiding the risk by
changing some of the quality factor goals.

4.4. Study of AFSC Management Indicators

The Air Force Systems Command (AFSC) has published two pamphlets in the area of software
quality management,

" Software Management Indicators, AFSC Pamphlet 800-43.
* Software Quality Indicators, AFSC Pamphlet 800-14.

This study reports on the relationship between the Indicators and the Methodology and describes
how and to what extent the Indicators can be incorporated into the Methodology.

A summary of our recommended approach is as follows. All 6 Software Management Indicators
and 4 of the Software Quality Indicators are process-oriented and should not be directly
incorporated into the product-oriented Methodology. These 10 Indicators are grouped to form the
"Software Process Indicators." The remaining 3 Software Quality Indicators are product-oriented.
These are grouped to form the "Software Product Indicators" and are incorporated into the
Methodology. During development of a software project, the Software Process Indicators are
calculated every month based on a small amount of collected process data. At the end of each
development phase, a much larger amount of process and product data is collected. The process

I-5

data is used to calculate the Software Process Indicators as usual, and the product data is used to
answer the Methodology metric questions. The Methodology metric questions in turn are used to
calculate the Software Product Indicators and the Methodology metric, criteria, and factor scores.
With this approach, the acquisition manager obtains both an overall view of the project's quality
(from the Indicators) and a detailed view of each individual software document's quality (from the
Methodology).

4.5. Study of Metric Question Traceability

Appendix A of Volume III contains a cross reference listing showing all the metric worksheets on
which each metric question appears. For example, metric question CP. 1(2), part of the
Completeness criterion, is asked during the System/Software Requirements Analysis phase on
Metric Worksheet 0; during the Software Requirements Analysis phase on Metric Worksheet 1;
during the Preliminary Design phase on Metric Worksheet 2; during the Detailed Design phase on
Metric Worksheets 3A and 3B; and during the Coding and Unit Testing phase on Metric
Worksheets 4A and 4B. This question is not asked during the CSC Integration and Testing, the
CSCI-Level Testing, or the System Integi d'ion and Testing phases.

It can be seen that metric question CP. 1(2) is asked repeatedly during each sequential development
phase. Thus, the quality concern this question addresses is tracked from phase to phase to ensure
that it is addressed throughout the deve' -ient process. We say that traceability is provided for
this quality concern across the developmenit process.

Studying Appendix A, one quickly discovers that there seem to be traceability gaps in certain
metric questions. For example, the AM. 1 (1) metric question is asked during the System/Software
Requirements Analysis phase on Metric Worksheet 0 and during the Software Requirements
Analysis phase on Metric Worksheet 1. Subsequently, that question appears on no other
worksheet and is not asked during the Preliminary Design, Detailed Design, Coding and Unit
Testing, and CSC Integration and Testing phases. After this gap, the question reappears during
the CSCI-Level Testing phase on Metric Worksheet I and the System Integration and Testing
phase on Metric Worksheet 0. Many other examples are apparent in Appendix A.

This study addresses the following questions:
- Is it true that because of these traceability gaps, important software quality concerns will

not be addressed during certain development phases?
- Should new metric questions be written to fill the gaps?
- If so, what are the metric questions that should be added?

We studied each metric question gap and concluded that in all cases there are valid reasons for the
gap's existence. Traceability of software quality concerns is not lost due to these gaps. No new
metric questions need to be added.

4.6. Study of the Relationship Between Metric Data Collection and 2167A

The primary goal of this study was to develop a cross-reference guide which indicates the DOD-
STD-2167A DID information source, if any, for each of the metric questions. The intent of the
cross-reference guide is to improve the ease of use and cost effectiveness of implementing the
methodology by reducing the time required to locate information required to answer the metric
questions. A secondary goal was to consider the relationship between metric data collection and
DOD-STD-2167A.

1-6

In general, we found the process of identifying DOD-STD-2167A DID data sources for metric
questions to be both difficult and frustrating. Clearly, a contributing factor was the quality of
many of the questions. The other major factor which contributed to the task's difficulty was the
structure of the DOD-STD-2167A DIDs and the lack of interpretative and guidance material.

We also detected several basic incompatibilities between the Worksheets and DOD-STD-2167A.
For example, Worksheet 0 contains many questions related to system-wide technical requirements,
but the structure and specifications of the System/Segment Specification document did not provide
obvious locations for the recording/reporting of such information.

We also developed four general recommendations as a result of our experiences in creating the
cross reference guide:

1. Develop a metric questions guidebook.

2. Develop a DOD-STD-2167 guidebook for users of the Methodology.

3. Require future development of metric questions to follow a standard process.

4. Submit modification requests for DOD-STD-2167A.

5. SUMMARY

This effort involved a comprehensive review of the RADC Software Quality Measurement
Methodology and the related government software development and quality standards. Our
objective in conducting this investigation was to provide enhancement recommendations in several
areas. During the course of our work, we repeatedly concluded that aspects of the software quality
measurement methodology were overly complex. As a result of this conclusion, we have included
here a preliminary set of thoughts related to a new view of the RADC measurement methodology.

6. REFERENCES

[1] T.P. Bowen, G. B. Wigle, and J. T. Tsai "Specification of Software Quality Attributes,"
RADC-TR-85-37, Rome Air Development Center, Feb., 1985

[2] James L. Warthman, "Software Quality Measurement Demonstration Project I," Final
Technical Report, RADC-TR-87-247, Dec., 1987

[3] Patricia Pierce, Richard Hartley, and Suellen Worrells, "Software Quality Measurement
Demonstration Project II," Final Technical Report, RADC-TR-87-164, Oct., 1987

[41 Dynamics Research Corporation, "Guidebook Validation Results," Sept., 1986,
Contract no, F19628-84-D-0016

[5] AFSC Pamphlet 800-43, Software Management Indicators, Jan. 1986

[6] AFSC Pamphelt 800-14, Software Quality Indicators, Jan., 1987

[71 DOD-STD-2167A. Military Standard Defense System Software Development, Feb.,1988

[8] DOD-STD-2168. Military Standard Defense Software Quality Program, April, 1988

1-7

[9] Scientific Applications International Corp and Software Productivity Solutions, Inc.,
"Software Quality Framework Issues," TR (Interim) Volumes I, II, I1, IV, 2 June 89,
prepared for Rome Air Development Center, Contract no. F30602-88-C-0019.

[10] SDS Documentation Set, June, 1985, Rome Air Development Center

[11] Michael S. Deutsch and Ronald R. Willis, Software Quality Engineering, Prentice Hall, 1988

1-8

SECTION II

ELEMENTS of a SOFTWARE QUALITY COMPLIANCE MODEL

1. INTRODUCTION

Starting in 1976, RADC has been funding the development of a software quality measurement
methodology. During this time and up to the present, this research program has been the only
sustained effort which has attempted to define a methodology to specify and evaluate software
quality at the product level. The current definition of the methodology is found in [1]. The key
underlying concept of the methodology is a 3 level hierarchial model. The top level is a set of
customer-oriented software quality factors. The second level is a larger set of defining attributes
for the software quality factors. These are termed software quality criteria and reflect technical
considerations of good software engineering and development practice. The third level is a still
larger set of software quality metrics which are believed to be valid component measures of the
software quality criteria. The software quality metrics in turn are defined by lower level metric
elements.

Although the conceptual basis of the model is straightforward, the application of the model and the
methodology to actual software development efforts is non-trivial, both in terms of conceptual
application and procedure [2,3,4]. The model and the methodology have generated much
discussion and debate during the past several years. Most recently, a group of RADC contractors
formed a Software Quality Methodology Working Group to comprehensively review the model
and the methodology1. As our own work on this effort proceeded, including attendance at the
Working Group Meetings, we concluded that the methodology was unnecessarily complex relative
to the goal of improving the quality of delivered software. Our concern was that validation of the
model and the methodology could be intractable. If this turned out to be the case, widespread
acceptance of the methodology by the contracting community would be impaired or possibly
precluded. We also strongly believed and continue to feel that a practical software quality
measurement methodology has enormous potential to improve !he quality of software developed by
the contractor community. Thus, we set out to interject a different perspective, based on prior and
current RADC supported efforts, in the hopes of stimulating a complementary direction for future
work. It is not our purpose here to analyze in any detail the current model and methodology. The
following sketches out our preliminary thoughts, admittedly in too little detail.

2. AGGREGATE SCORING VERSUS REQUIREMENTS COMPLIANCE

Guidebook Volume II provides a methodology for specifying software quality goals. The end
,alt of the specification process is a set of quantitative goals for each of the top level software

quality factors. Guidebook Volume II provides a methodology for evaluating achieved levels of
software quality for intermediate and final software products. The evaluation is based on answers
to the low level metric element questions. Most of these questions generate values of 1 if Yes and

I Organizations represented in the Working Group included Computer Science Innovations, Inc. (CSI), the
Data and Analysis Center for Software (DACS), Dynamics Research Corporation (DRC), Illinois Institute
of Technology Research Institute (IITRI), RADC, RIT, Scientific Applications International Corporation
(SAIC), Software Productivity Solutions, Inc. (SPS), and US Army Communications-Electronics
Command (CECOM). The results of the Working Group's meetings are found in [5].

H-1

0 if No. These values are then aggregated to generate metric scores which are in turn aggregated to
generate criteria scores. The criteria scores are then aggregated to generate the factor scores which
are compared to the factor goals. We have termed this approach the Software Quality Aggregate
Scoring Model.

From the academic point of view, we are concerned that the compound effects of score averaging,
weighting and aggregation will hinder efforts to validate this model. Also, we believe parts of the
methodology are unnecessarily complex relative to the goal of improving the quality of delivered
software. Our research contractor colleagues agree with this assessment. Unfortunately,
demonstrated validity will be a critical success factor in the eventual acceptance of the methodology
by the contracting community. Our concerns over this matter have lead us to propose a more
simple and focused model we have named the Software Quality Compliance Model.

The key idea for the compliance model was suggested by work done at Hughes Aircraft Company
by Deutsch and Willis [6]. They asserted that the Guidebook Volume III metric questions should
be rephrased in terms of testable requirements. With this perspective in mind, we conceptualized a
two-level model by eliminating the middle level criteria level from the RADC model. The top level
quantitative factor goals are replaced by a set of required (mandatory) software features. The
extent of the features required for a given quality factor is dependent on the desired quality level for
that factor. Assessment of achieved quality is a matter of determining the percentage of required
software features actually implemented. Hence, the term compliance model. We also see a real
need to provide a technical assessment of implementation (source code) quality. We envision this
being accomplished automatically by a quality-oriented source code analyzer.

3. A SOFTWARE QUALITY COMPLIANCE MODEL

3.1. Quality Factor Specification

In the compliance model, quality factors are not assigned quantitative goals. In their place, a set of
software feature requirements are attached to each quality factor selected for inclusion in the
specification phase of the methodology. The extent of the requirements set, in terms of the number
of requirements and the level of specificity of each requirement, is a function of the required quality
level for that factor. Quality levels are expressed on a simple scale such as Ultra High, Very High,
High, Average and Moderate. An immediate problem is: how is the requirement set generated for
each quality factor?

Current RADC supported work provides a powerful solution to this problem. One part of the
solutio.i is to rely on domain analyses which are conducted specifically to correlate system or
functional requirements with software quality requirements. Preliminary work in several mission
areas is underway [7]. The other part of the solution is an expert system, designed to support the
software quality measurement methodology, which incorporates the domain analysis into the
system's knowledge base. The presence of domain knowledge, together with more general
software engineering knowledge, will permit the expert system to not only support the generation
of the quality factor requirement sets but also support the necessary technical tradeoff analysis and
eventually the cost tradeoff analysis as well. In addition, the expert system can support the
identification of the most critical quality factors for the system under consideration. Such an expert
system has been under development for several years [8].

3.2. Evaluation of Achieved Quality

The evaluation of achieved quality has two components. The first determines the extent to which
the contractor has complied with the requirements set for each factor. That is, what percentage of

11-2

the requirements set actually has been implemented in the software being reviewed or being
delivered. The result of this determination is simply expressed as a compliance percentage and is
reported along with a list of the requirements not implemented. We leave as open issues two
items. First, what methodology is used to precisely determine which requirements have been
implemented. Second, what uses can be made of the compliance report.2

The second evaluation component is a determination of the technical quality of the implemented
software requirements. We equate technical quality with adherence to software engineering
principles and best current practice. Since this evaluation component is focused on the source
code, the analysis can be performed automatically by an appropriate source code analyzer.3 The
results of the source code analysis can, of course, be reported at several different levels of detail. 4

In keeping with the spirit of this discussion, we envision a single figure-of-merit (together with a
simple relative scale), being reported to give the acquisition manager and/or customer a sense of the
quality of the technical work.

4. ASSESSMENT

Although we have here only sketched out our preliminary thoughts, some assessment of the
compliance model seems appropriate. Following we give some indications of the model's
advantages and disadvantages.

4.1. Advantages

1. Conceptual Simplicity. It appears that the compliance model is easy to understand and we
think would make sense to a software acquisition manager, a development contractor, the
customer and the user(s).

2. Focus. We believe that focus on requirements is a major advantage of the compliance model.
It is immediately of interest to the software acquisition manager, to the customer and to the
user(s).

3. Reporting Structure. The minimal reporting structure is the compliance report and the
technical implementation figure-of-merit. We believe that even this minimal reporting
structure has potentially significant management value, while at the same time it is both
streamlined and easy to understand. It largely avoids questions of statistical validity and
statistical interpretation.

4. Contractor behavior. The compliance model does not appear to have elements which could
be advantageously manipulated to contractor benefit.

2 Most likely, some method of lifecycle requirements traceability would be used, as is the case in the
current RADC methodology. As for the compliance report, the contractor would probably be required to
explain and justify why certain requirements were not implemented. A mechanism would then be required
to assess the severity of non-compliance.

3 One such source code analyzer for the Ada programming language is the ADAMAT 1' product developed
by Dynamics Research Corporation, Andover, MA..
4 Very detailed analysis could be provided to programmers while a more aggregate level of detail would be
useful to programming managers.

11-3

5. Training effort. The simplicity of the compliance model, together with the absence of an
elaborate evaluation system based on scoring, should mitigate the amount of training required

4.2. Disadvantages

1. Dependence on domain analysis. The effectiveness of the compliance model rests largely on
the accuracy and completeness of the requirements set. This, in turn, is dependent on the
availability of a software quality-oriented domain analysis. Such domain analyses are rare
and expensive to produce.

2. Lack of developmental support. The suggested reporting structure does not provide
information which can be used to support identification and correction of software
development problem areas. Modification of the reporting structure to meet this concern may
impair some of the model's advantages.

5. CONCLUSION

We anticipate that a fully developed Software Quality Compliance Model would gain wide
acceptance in the software development contractor community, while at the same time provide the
government with an effective software quality management tool. While the compliance model can
be viewed as an alternative to the current RADC aggregate scoring model, we believe the better
perspective is the one that views the two models as complementary. In fact, both models could be
used simultaneously. The compliance model would be used for high level management control and
review, while the aggregate scoring model would be used to identify and support development
problem resolution.

6. REFERENCES

[1] T.P. Bowen, G. B. Wigle, and J. T. Tsai "Specification of Software Quality Attributes,"
RADC-TR-85-37, Rome Air Development Center, Feb., 1985

[2] James L. Warthman, "Software Quality Measurement Demonstration Project I," Final
Technical Report, RADC-TR-87-247, Dec., 1987

[3] Patricia Pierce, Richard Hartley, and Suellen Worrells, "Software Quality Measurement
Demonstration Project II," Final Technical Report, RADC-TR-87-164, Oct., 1987

[4] Dynamics Research Corporation, "Guidebook Validation Results," Sept., 1986,
Contract no, F19628-84-D-0016

[5] Scientific Applications International Corp and Software Productivity Solutions, Inc.,
"Software Quality Framework Issues," TR (Interim) Volumes I,J,III,IV, 2 June 89,
prepared for Rome Air Development Center, Contract no. F30602-88-C-0019.

[6] Michael S. Deutsch and Ronald R. Willis, Software Quality Engineering, Prentice Hall, 1988

[7] Advanced Technology, Inc., "Mission Area Analysis," Contract no. F30602-87-D-0094.

[8] Dynamics Research Corporation, "Operational Concepts Document for the Assistant for
Specifying the Quality of Software (ASQS)," 23 Oct 1987

11-4

SECTION III

STUDY of the SOFTWARE QUALITY SPECIFICATION PROCESS

1. INTRODUCTION
The Rome Air Development Center has sponsored ongoing research into a software quality
specification and measurement methodology, hereafter referred to as the "Methodology" The
Methodology is documented in a three volume set of guidebooks:

- Specification of Software Quality Attributes, RADC-TR-85-37, Vols. I-I1. [1]
Volume I summarizes the DOD system acquisition process and discusses in some detail the
interrelationships between software acquisition and system acquisition. Volume II presents a
methodology for identifying system functions to be implemented in software, determining the
relative importance of a set of software quality factors, the technical relationships (tradeoffs)
between these factors, and the cost relationships (tradeoffs) between these factors. The end result
of applying the specification methodology is a set of quantitative software quality goals which
reflect the impact of technical and cost constraints on desired levels of software quality factors.
Volume III presents a software quality evaluation methodology for determining the achieved levels
of the software quality factors in intermediate and final software products.
This paper presents our analysis of the software quality specification process outlined in
Guidebook Volume I and describes our recommendations for changing that process.
A summary of our analysis is as follows. The current software quality specification process is too
detailed and is not validated. It is too detailed because it requires specifying separate software
quality factor goals for each identified software function, whereas we believe it is more appropriate
to specify overall system quality factor goals or, at most, CSCI-level quality factor goals. It is also
too detailed in that the system acquisition manager must devote significant amounts of time to
determine what are meant to be broad quality goals; the amount of work required is out of
proportion with the scope and accuracy of the results. The current process is also unvalidated. In
particular, the negative factor interrelationships and incremental quality factor costs are based only
on opinions and experience, not on actual real-world project data.
A summary of our recommendations is as follows. The software quality specification process is
simplified by specifying quality factor goals at the system level, or at most the CSCI level. The
process is also simplified by eliminating the tailoring of metric and criterion weights; all metric
questions for a criterion and all criteria for a factor are weighted equally. The feasibility of meeting
all the quality factor goals is studied as part of a risk analysis, which we recommend be conducted
in accordance with AFSC Pamphlet 800-45, Software Risk Management. [2] Software quality
risk has two components: technical risk and cost risk. We suggest that the technical risk
assessment be based on a simplified analysis of negative factor interrelationships. We also suggest
that the cost risk assessment be based on an analysis of incremental costs derived from the
COCOMO software cost model, which is a validated model based on real-world data [91 The
software quality risk becomes one part of the overall risk analysis and may be handled in various
ways, including assuming the risk and making no changes in the quality factor goals, or avoiding
the risk by changing some of the quality factor goals.
Section 2 critiques the software quality specification process as described in Volume II. Section 3
gives an overview of our recommended software quality specification process, while Section 4
describes our recommendations in detail.

111-1

2. THE CURRENT SOFTWARE QUALITY SPECIFICATION PROCESS

The single biggest criticism we and others have of the current specification process is that it is too
complicated. Our overall goal in this study has been to simplify the specification process while
retaining the valuable software quality information it provides. In this section we critique the
current specification process and indicate areas where it can be simplified and improved. In
Sections 3 and 4 we describe the revised specification process.

2.1. Automated Tools and the Methodology
It might be argued that automating the Methodology through the use of software tools would
overcome the Methodology's problem of being too complex. Indeed, two tools have been
proposed and are being developed: the Assistant for the Specification of Quality Software (ASQS)
[3], an expert system that helps the acquisition manager carry out the Volume II quality
specification process, and the Quality Evaluation System (QUES) [4], a tool that supports the
Volume III evaluation process (collection of quality evaluation data from project documents and
source code, and calculation of metric, criterion, and factor scores). Future versions of the ASQS
will assess compliance with specification goals using the data collected and processed by the
QUES.
While we agree that these automated tools are useful and valuable, we still recommend that the
Methodology be simplified. Because of potential defects or oversights in the tool, the results it
produces may look reasonable, yet be incorrect. The tool user-the acquisition manager in this
case-must in principle be able to check the tool's results by following the Methodology manually.
If the Methodology is too complicated to be carried out manually, the acquisition managers will be
forced to rely on the tools' results without being easily able to check them independently.

Therefore, the discussion below is written with the viewpoint that the Methodology must, at least
in principle, be able to be carried out manually. Points at which the ASQS and QUES tools will
assist the acquisition manager are noted, but these tools are not emphasized.

2.2. Software Quality Factors

The Methodology defines 13 software quality factors:

- Performance factors:

Efficiency
Integrity
Reliability
Survivability
Usability

- Design factors:

Correctness
Maintainability
Verifiability

- Adaptation factors:

Expandability
Flexibility
Interoperability
Portability
Reusability

111-2

Substantial disagreements exist related to the appropriateness of retaining some of these factors in
future revisions of the Methodology, as well as the precise definitions of the factors and of their
underlying technical attributes. Comprehensive treatments of these and related issues are contained
in [5,6,7].

2.3. Setting Quality Factor Goals
Volume II requires the acquisition manager to identify the major software functions in the system
being acquired and to set quality goals separately for each function. Alternatively, the acquisition
manager could set quality goals for the entire system rather than for each function. Below we
discuss the pros and cons of these two approaches. We recommend changing the Methodology to
use the latter approach.
Specifying quality goals separately for each function has the advantage that different functions in
the software can get different sets of quality goals, depending on each function's criticality. This
in turn allows the developers to target their efforts; they can spend more resources on the functions
that require higher quality levels than on those that require lower quality levels. Generic domain
analyses would list the functions and their recommended quality levels for different kinds of
systems.
Specifying quality goals separately for each function has many drawbacks, though:

- It may be unclear what the "functions" are in a particular system, especially if no generic
domain analysis is available. The acquisition manager must then define the functions
arbitrarily, and there is no guarantee that the metric values achieved by this system's
functions will be comparable to any other system's functions. Specifying quality goals and
collecting metric data for the system as a whole ensures that the data can be compared with,
and the experience with this system can be applied to, other similar systems.

- The system's users usually do not perceive variations in quality requirements among the
system's functions-if indeed they are aware of separate functions at all. They say, "This
weapon must be highly reliable, highly maintainable," and so on. Specifying quality goals
for the system as a whole is more in accord with the users' viewpoint.

- Under DOD-STD-2167A [101, all software documentation is organized by the Computer
Software Configuration Item (CSCI), not by the function. A CSCI tends to be a large
conglomeration of many functions. If the documentation is organized by CSCI rather than
by function, it makes more sense to organize the quality goals the same way-to specify
quality goals for the system as a whole, or at most for each CSCI.

- Each CSCI is further organized into Computer Software Components (CSCs). It is
therefore easy to collect metric data separately for CSCs. However, there is no clear
relationship between CSCs and functions. It is likely that each function will be
implemented by several CSCs, and each CSC will implement part of several functions. It
is unclear how to allocate a CSC's metric scores among the functions it helps to implement.
Specifying quality goals for the system as a whole avoids these problems: all the CSCs'
metric scores are combined into a single system-wide score.

- If the Methodology is to be accepted it must be usable. Requiring acquisition managers to
deal with each function separately-specifying quality goals, collecting metric data, and
calculating metric scores separately for each function-makes implementing the
Methodology too much work. Implementing the Methodology at just the system level is a
substantial undertaking.

111-3

Specifying quality goals for the system as a whole, or at most for each CSCI, rather than for each
function, will greatly simplify the Methodology and make it more usable. We recommend
changing the Methodology in this way.

2.4. Complementary Factor Interrelationships
Volume 11 Section 4.1.2.4 requires the acquisition manager to consider complementary factor
interrelationships when setting quality factor goals. The factors that are complementary to most
other factors are Reliability, Correctness, Maintainability, and Verifiability. If a high level of
quality is specified for certain factors, say Reusability, then a high level of quality must also be
specified for the four complementary factors. The reasoning is that a project that scores high on
the Reusability factor but low on a complementary factor like Maintainability cannot truly be highly
reusable.
In order to simplify the Methodology, we agree with others [5,7] that consideration of the
complementary factor interrelationships should be eliminated. If there are indeed complementary
relationships among quality factors on certain kinds of systems, then the generic domain analysis
for that kind of system should recommend that high quality levels be specified for all the related
factors. This accounts for the interrelationships implicitly during the initial quality goal setting
rather than explicitly as a separate step in the process.

2.5. Positive and Negative Factor Interrelationships
Volume II Section 4.1.3 discusses positive and negative interrelationships among the quality
factors. Negative factor interrelationships are problematic; if high quality goals are specified for
two negatively interrelated factors, achieving high quality for both of them will be more difficult.
Section 4.1.3 offers several options for dealing with conflicts: try to achieve the quality goals
anyway, reduce the goal for one of the factors, or increase the computing hardware capabilities.
Although Section 4.1.3 does not speak in these terms, this is very much like a risk analysis. We
recommend that consideration of negative factor interrelationships take an explicitly risk-based
approach. The more pairs of factor goals that are negatively interrelated and that are both specified
as high, the greater the technical risk that those goals cannot be achieved.
This software quality technical risk is only one of many risk areas the acquisition manager must
assess. DOD-STD-2167A requires that a risk assessment be done early in the project, and
methods for managing the risk be documented and followed. AFSC Pamphlet 800-45 gives a
procedure for assessing risk and deciding how to manage it. We recommend that consideration of
negative factor interrelationships be one more item in the total risk assessment.
With a risk-based approach, the acquisition manager has several options described in AFSC
Pamphlet 800-45 if a high-risk set of software quality goals is specified. The acquisition manager
can change the software quality goals to reduce the risk (risk avoidance). However, the acquisition
manager can also decide that, in the context of the entire risk assessment, the software quality risk
is acceptable, and leave the software quality goals unchanged (risk assumption). The acquisition
manager can implement some requirements in hardware rather than software, thus reducing the
software risk (risk transfer).

2.6. Cost Analysis
After setting quality factor goals, the acquisition manager analyzes how much meeting them will
cost. Volume II Section 4.1.4 gives a procedure for estimating the incremental software quality
cost: the extra percentage of the base software development cost that must be expended to achieve
the software quality goals. Each quality factor goal level translates to a percentage, and the
percentages are added to get an overall incremental cost.

111-4

The approach of estimating an incremental software quality cost is sound. However, the particular
numbers and method in Section 4.1.4 are unvalidated. There is no real world project data from
which these numbers were derived. There is no reason to believe that this method gives accurate
estimates. We recommend that it be rejected. In its place, we recommend that the Methodology
use an incremental software quality cost estimation model based on the Intermediate COCOMO
Model.

As with the positive and negative factor interrelationships, we further recommend that the
incremental software quality cost estimate become part of the overall project risk assessment.
Higher costs translate to higher risks. The acquisition manager has the option of changing the
quality goals to reduce the cost risk, or leaving the quality goals as they are and assuming the
higher risk.

2.7. Criteria and Metric Question Weighting
Volume II Section 4.2.2 has the acquisition manager define formulas for the criteria scores as a
weighted sum of the relevant metric question scores, and formulas for the factor scores as a
weighted sum of the relevant criteria scores. The acquisition manager is allowed to assign unequal
weights to differert components of a formula-perhaps because certain metric questions or criteria
are less important than others in a particular application.

However, as stated in [7], allowing different projects to use different sets of weights for their
scores prevents meaningful comparisons among the projects' metric scores and makes it
impossible to accumulate information from many projects about the levels of metric scores to
expect. Also, no guidance is given on which weights to change and how much to change them.

With the goal of simplifying the Methodology, we recommend (as does [7]) that all metric
questions be weighted equally in a criterion's formula, and all criteria be weighted equally in a
factor's formula. At some point in the future, the knowledge base of the ASQS may be sufficiently
mature as to permit objective weighting suggestions

2.8. Numerical Factor Goals
Volume II Section 4.1.4.4 recommends that the final quality factor goals be translated to ranges of
factor scores this way: E-from 0.90 to 1, G-from 0.80 to 0.89, A-from 0.70 to 0.79. If a
project's final score calculated for each factor falls within the range corresponding to its goal, the
goal is met, and the acquisition manager will accept delivery; otherwise the project has an
unacceptable level of quality.

Like the Methodologies current cost analysis procedure (see Section 2.5), these ranges are
unvalidated. Validating these ranges would involve taking a large number of real-world software
projects which have been demonstrated to have high quality (say, acceptably low defect rates
during the first year of operation), computing the quality factor scores for those projects, and
determining if the factor scores fall within the correct numerical ranges. No such study has been
done.

However, the acquisition manager must be able to decide if the quality factor scores calculated
from the final software meet the quality factor goals specified for the project. The only way to do
this is by assigning a factor score range to each quality goal level. In the absence of any real-world
data, we recommend that the following ranges be used for now: E-0.90 to 1.00, G-0.80 to
1.00, A-0.70 to 1.00. Note that we have expanded the upper end of the G and the A ranges to
1.00. This is because a calculated factor score of, say, 0.95 does meet a factor goal of, say, G.
(If a factor score is sufficient to meet a certain goal, it must a fortiori be sufficient to meet any
lower goal.)

111-5

As the Methodology is applied to actual projects and data accumulates, these ranges must be
validated and adjusted if necessary.

3. OVERVIEW OF THE RECOMMENDED PROCESS
Figure 1 is a flowchart of the software quality specification process we recommend to replace the
one in Volume II. This section summarizes the steps in the process. Details of each step are given
in Section 4. Our work has been influenced by Deutsch's and Willis's approach in [8].
Eliminate Factors. The acquiring manager begins by tailoring the Framework. This consists of
eliminating entire quality factors that are not applicable to the system being acquired.
Set quality factor goals. For each remaining quality factor, the manager sets a goal of E
(excellent), G (good), or A (average) quality. This is done by a user survey and/or by referring to
a generic problem domain analysis.
Analyze technical risk. The manager analyzes possible negative interrelationships between the
goals set for the quality factors and determines the risk that the specified combination of goals will
not be met.
Analyze cost risk. The manager estimates the cost to achieve the goals set for the quality factors
relative to the development cost without those goals. This takes the form of an incremental cost;
for example, achieving the quality goals will increase the development cost by 10%.
Assess overall risk. The technical and cost risk analysis results are folded into the overall software
risk assessment described in AFSC Pamphlet 800-45. This pamphlet recommends that the
program office implement risk management studies very early in the acquisition cycle, during
mission analysis and concept exploration. This is the time when the acquiring manager would be
establishing software quality requirements using the Framework.
The assessment includes deciding how to handle the risk that exists, if any. One way to handle the
risk is simply to "assume" the risk (gamble that the system will be developed successfully); then
the quality goals do not need to change. Another way to handle the risk is to "avoid" it by chang-
ing the quality goals to reduce the risk; this requires re-analyzing the risk.
Define criteria and metric questions and weights. At this point the manager has a set of quality
factor goals whose risk is acceptable. All that remains is to prepare quality data collection work-
sheets that contain all metric questions for all criteria that are part of the specified factors, and to
define formulas for calculating criteria scores from the metrics and factor scores from the criteria.
To facilitate comparing factor scores between projects, all metrics and criteria are weighted equally.

4

III-6

Figure 1. Recommended Software Quality Acquisition Process.

S Start

Tailor the
Framework

Stquality factor
goalsI " --- --- -

Analyze technical Analyze cost risk AFSCP 800-45
risk 1 Risk Management

____ ____ *-----------------

Assess overall
risk

Define criteria

and metrics

4
Set numerical
factor goals

stop-

111-7

Set numericalfactor goals. Finally, the manager translates the quality factor goals (E, G, and A)
into numerical factor score ranges. Before the program office will accept the system, the soft-
ware's computed factor scores much all fall in their required ranges, or the ranges must be
changed.
The ASQS tool will assist the acquisition manager to carry out this software quality acquisition
process.

4. DETAILS OF THE RECOMMENDED PROCESS

4.1. Eliminate Factors

To begin the software quality acquisition process, the acquiring manager eliminates those quality
factors that are not applicable to the system being acquired.

The manager can draw on several sources of guidance when deciding which factors to retain and
which to eliminate:

- Acquisition documents. Requests For Proposal, Statements of Work, and other such doc-
uments may already state software quality requirements, directly or indirectly, that can be
used to determine which quality factors are needed.
Table 4.1.2-3 in Volume II is useful when studying acquisition documents. This table
shows the correlation between 16 general system quality factors and the Methodology's
quality factors.

- Generic problem domain analyses. A generic description of a weapon system, a C31
system, or any other kind of system would supply not only a list of functions all such
systems perform, but also an indication of areas that do and do not require high software
quality.

For example, some hypothetical weapon system software installed in a missile might
require high reliability (so as not to fail in flight), but might not be concerned with integrity
(because no one will be trying to break into the system). A C31 system might require high
integrity (to prevent malicious users from breaking into the system), but might not be
concerned with portability (because the user will never require it to run on a different
hardware configuration).
Table 4.1.2-1 and Table 4.1.2-2 in Volume II are a rudimentary form of such a problem
domain analysis. The former table lists important software quality factors for major
command and control applications. The latter table lists examples of application and
environment characteristics and their related software quality factors.

- User surveys. The user surveys described in Section 4.2 can be used not only to determine
the users' desired quality goals, but also to find out which quality factors the users feel are
not applicable. Such factors can be tailored out.

- Maintainer surveys. Similarly, the personnel who will be maintaining the system after
delivery should be surveyed.

- The manager's own experience in acquiring similar systems.

We believe that certain quality factors-Correctness, Maintainability, and Verifiability-are
mandatory and must never be eliminated. This is because a lack of concern for these attributes is
poor software engineering practice, no matter what kind of system is being developed.

IH-8

4.2. Set Quality Factor Goals
Having determined which quality factors are applicable, the manager next sets a qualitative goal for
each quality factor. The possible goals are:

- E: Excellent quality is required for this factor.

- G: Good quality is required for this factor.

- A: Average quality is required for this factor.

- N/I: Quality is not an issue for this factor.

If the software consists of a single CSCI, as is often the case, then the quality goals are set for the
software as a whole. If the software consists of more than one CSCI, then the quality goals can be
set either for the software as a whole, or for each CSCI individually. Quality goals are not set for
each function, as is currently prescribed in Guidebook Volumes I and II.

When setting quality factor goals, the manager can draw on the same sources of guidance as
described in Section 4.1:

- Acquisition documents. Requests For Proposal, Statements of Work, and other such doc-
uments may indicate the level of quality needed.

- Generic problem domain analyses. A generic description of a weapon system, a C31 sys-
tem, or any other kind of system would indicate the quality level, or range of quality levels,
required for each quality area.

- User surveys. The manager should survey the system's users to determine their quality
needs. The quality requirements survey should take the form described in Volume II,
Paragraph 4.1.2.3, Table 4.1.2-4, and Table 4.1.2-5, except that the user would fill out
quality requirements for the entire system or for the CSCIs rather than for each function.

- Maintainer surveys. Similarly, the personnel who will be maintaining the system after
delivery should be surveyed.

- The manager's own experience in acquiring similar systems.

As discussed previously in Section 2.3, complementary factor interrelationships have been taken
out and do not influence setting the quality factor goals.

4.3. Analyze Technical Risk

Having set the quality factor goals, the manager proceeds to analyze the risk associated with that
set of goals; that is, the probability estimate that the desired set of quality goals will not be met.
The software quality risk is analyzed in two areas, software quality technical risk (described in this
section) and software quality cost risk (described in Section 4.4). The results of these risk
anaiyses are factored into an overall software risk analysis (described in Section 4.5), and the
manager then decides how to handle the risk.

4.3.1. Factor Interrelationships

The technical risk analysis is based on the factor interrelationship matrix in Figure 2. This is taken
from Volume II, Table 4.1.3-4, with the Efficiency and Interoperability factors removed. (Recent
critical analyses of the Methodology [5,71 have recommended that these two factors be eliminated).
Compared to the original Table, it will be seen that a significant reduction in the number of factor
interrelationships is accomnlished. We believe this is a superior state of affairs, since the overall
complexity of analyzing t,. - nical ,isk has been reduced.

111-9

Figure 2. Quality Factor Interrelationships.

(n. 4.

(Dcs " a - V

Integrity
Reliability '"

Survivability -- + +
Usability + "+-
Correctness *1+ +1+ + +
Maintainability + + + +

Verifiability

Expandability ---
Flexibility ---

Portability

Reusability --- "I- "

The entries in the matrix are interpreted as follows:
EnmInterrelationship

+ Positive interrelationship. Raising the level of quality for the factor in the
row generally results in raising the level of quality for the factor in the col-
umn.

Negative interrelationship. Raising the level of quality for the factor in the
row generally results in reducing the level of quality for the factor in the
column.

Blank No interrelationship. Raising the level of quality for the factor in the row
generally has no effect on the level of quality for the factor in the column.

For example, the matrix asserts that software which has a high degree of correctness is also likely
to have high maintainability as well (software without bugs is easier to maintain). Software with
high survivability is likely to have low portability (techniques for recovering from system failures
tend to be highly machine-specific and non-portable).

A technical risk may be present if these two conditions are both true:

- Two quality factors have a negative interrelationship.
- The quality goal for each of these factors is consequential (i.e., E, G, or A.

In such a case, the interrelationship matrix asserts that there is a good chance that the two
consequential quality goals cannot be met simultaneously; the risk is high. On the other hand, note

111-10

that if the one goal is E, G, or A, and the other goal is N/I for these negatively-interrelated factors,
then those goals are in accordance with the matrix and there is little risk. For positively-related or
non-related factors, if both goals are consequential, then they are also in accordance with the matrix
and there is little risk.

4.3.2. Software Quality Technical Risk Analysis Procedure
From these considerations, the technical risk analysis procedure is as follows.

1. Consider a pair of quality factors that have a negative interrelationship, as shown in Figure
2.

2. Decide if a risk exists based on the quality goals for these factors.
a. If the goal for the factor in the row in Figure 2 is E, and the goal for the factor in the

column in Figure 2 is E, G, or A, then a risk exists for this pair.
b. If the goal for the factor in the row is G, and the goal for the factor in the column is E

or G, then a risk exists for this pair.
c. If the goal for the factor in the row is A, and the goal for the factor in the column is E,

then a risk exists for this pair.
d. Otherwise, a risk does not exist for this pair.

3. Repeat Step 2 for all remaining pairs of quality factors that have a negative interrelation-
ship.

4. Assign an overall software quality technical risk level.

a. If there are no risky pairs of quality factor goals, then the overall software quality tech-
nical risk level is low.

b. If there are 1 to 3 risky pairs of quality factor goals, then the overall software quality
technical risk level is medium.

c. If there are 4 or more risky pairs of quality factor goals, then the overall software qual-
ity technical risk level is high.

The final software quality technical risk level, low, medium, or high, becomes part of the overall
software risk analysis described in Section 4.5.
The above ranges of numbers of risky pairs are suggestions. The acquiring manager must exercise
his or her own judgment in deriving a risk level from the number of risky pairs. Also, generic
domain analyses would identify specific risky pairs that are important for different mission areas.

4.4. Analyze Cost Risk
After the software quality technical risk, the manager analyzes the software quality cost risk. The
manager first estimates the cost to achieve the goals set for the quality factors relative to the devel-
opment cost without those goals. The result is an incremental cost; for example, achieving the
quality goals will increase the development cost by 10%. This incremental cost is then used to
assign a risk level.
Our incremental quality cost estimation approach is based on Deutsch's and Willis's approach,
which in turn relies on the COCOMO software cost estimation model. Our justifications for basing
quality cost calculations on the COCOMO model are:

COCOMO is the most widely used cost estimating model in the private and government
software development communities.

IlI-11

- This wide body of experience has shown that the COCOMO model yields acceptably
accurate estimates on the order of +/- 20% approximately 70% of the time.

- The COCOMO model is undergoing continual improvement and revision as experience
with it accumulates. Barry Boehm at TRW has recently revised the cost driver component
of the model and has provided a model variant specific to Ada [11].

Section 4.4.1 gives an overview of the Intermediate COCOMO Model. The remaining subsections
describe how that model is used to estimate incremental software quality costs in the Framework.

4.4.1. The Intermediate COCOMO Model
First, a nominal effort estimate for the project is derived based on the project's development mode
(organic, semidetached, or embedded) and the size of the software to be developed (in thousands
of developed source instructions, or KDSI). For an embedded mode project, the nominal effort
formula is:

Effort (staff-months) = 2.8 (KDSI) 1.20

Second, this nominal effort estimate is modified based on characteristics of the project. These take
the form of fifteen cost drivers:

- Product attributes:

- Required software reliability.
- Data base size.
- Product complexity.

- Computer attributes:

- Execution time constraint.
- Main storage constraint.
- Virtual machine volatility.
- Computer turnaround time.

- Personnel attributes:

- Analyst capability.
- Applications experience.
- Programmer capability.
- Virtual machine experience.
- Programming language experience.

- Project attributes:
- Use of modem programming practices.
- Use of software tools.
- Required development schedule.

HII-12

Each cost driver is rated on a six-point scale: very low, low, nominal, high, very high, and extra
high. The rating for each cost driver gives an effort multiplier for each cost driver. Here are the
effort multipliers for the various ratings of selected cost drivers:

Very Nom- Very Extra
C Lo inal High high high
Required software reliability 0.75 0.88 1.00 1.15 1.40 1.40

Use of modem programming practices 1.24 1.10 1.00 0.91 0.82 0.82

Use of software tools 1.24 1.10 1.00 0.91 0.83 0.83
Third, the fifteen multipliers for all the cost drivers are multiplied together to give an overall effort
multiplier, this can range anywhere from 0.09 to 72.97. Then the overall effort multiplier and the
nominal effort estimate are multiplied to give the actual effort estimate.
Finally, a schedule estimate and a breakdown of effort and schedule within each development
phase are computed from the actual effort estimate. Since we are interested in estimating just the
cost of software quality, and since the cost of a software project is determined by the total effort in
staff-months rather than the schedule, the schedule and phase breakdown formulas will not be
discussed here.

4.4.2. Rationale for the Software Quality Cost Analysis Approach

The quality requirements influence the development cost in three ways:

- Increased software size.

- Increased cost drivers.

- Increased independent verification and validation (IV&V) costs.
First, specifying high quality levels may require adding code to the software that would not be
needed otherwise. For example, software with high survivability must have additional fault-
recovery code. This increased software size increases the KDSI input to the COCOMO model,
thus increasing the cost.

The acquisition manager must therefore obtain an estimate of the percent increase in the software
size that will be needed to implement the quality factor goals. This estimate can be obtained from
the history of systems previously acquired, by asking software developers who have worked on
similar projects in the past, or by other means.
The incremental cost due to increased software size is estimated as follows. Let E0 be the project
cost before adding the extra software to achieve the quality goals. Let El be the project cost after
adding the extra software. Then the incremental cost ratio is given by EI/Eo. To calculate this, let
So be the software size before adding the extra software to achieve the quality goals. Let X be the
percent increase in the software size required to achieve the quality goals. Then M 1 the revised
cost due to increased software size, from the COCOMO formula for nominal effort, is:

E1 2.8 (SO x (1 + X/100)) 20 0M = = 2 = (I + X/100)
I E0 2.8(S 0) 12

Second, some of the COCOMO cost drivers are related to software quality. Specifying high
quality levels will increase the effort multipliers associated with these cost drivers, thus increasing
the cost.

111-13

Only one cost driver, Reliability, directly corresponds to one of the Methodology quality factors.
The specified quality goal for the Reliability factor can therefore be translated to a Reliability cost
driver setting. We recommend this translation: E to very high, G to high, A to nominal, and N/I
to low. From the table in Section 4.4.1, the software reliability multiplier M2 is 1.40, 1.15, 1.00,
or 0.88, respectively.

For the remaining quality factors, we assume (as do Deutsch and Willis) that the factor goals
influence the Modem Programming Practices and the Use Of Software Tools cost drivers. We
recommend averaging the quality goals for all factors (including Reliability), then translating this
average quality goal into cost driver settings as above. If the average quality goal is E, the Modem
Programming Practices and the Use of Software Tools cost drivers will both be set to very high,
the numerical effort multipliers will be 0.82 and 0.83, and the combined software quality multiplier
M3 will be 0.82 x 0.83 = 0.68. Likewise, if the average quality goal is G, M3 will be 0.91 x 0.91
= 0.83; if the average quality goal is A or N/I, M3 will be 1.00 x 1.00 = 1.00.

Third, Deutsch and Willis describe a model for the additional IV&V costs that must be incurred to
achieve a given level of quality. These IV&V costs would be incurred only if the software is
submitted to an organization other than the developing organization for verification and validation,
as part of the acquiring agency's plan for achieving the required quality goals. The additional
IV&V cost is the product of two numbers: a number that depends on the average quality goal for
all of the factors, and a number that is the percentage of the software subjected to IV&V. The
details of Deutsch's and Willis's calculation appear in Section 4.4.3 below.

4.4.3. Software Quality Cost Risk Analysis Approach

The procedure for analyzing software quality cost risk is as follows.

1. Determine the software size multiplier, M1 .

a. Estimate X = the percent increase in the software size (lines of code) required to
implement all the quality factor goals.

b. Calculate MI = (1 + X/100) 1.20.

2. Determine the software reliability multiplier, M2.

a. Reliability factor goal is E M2 = 1.40
G 1.15
A 1.00
N/I 0.88

3. Determine the software quality multiplier, M3.

a. Calculate the average of the remaining ten (10) quality factor goals as follows. Assign
a goal of E the number 3; G, 2; A or N/l, 1. Add these ten numbers, divide the sum by
10, and round to the nearest integer. Convert the result back to the average quality
factor goal of E, G, A, or N/I.

b. Average quality factor goal is E M3 = 0.68
G 0.83
A or N/I 1.00

4. Determine the IV&V multiplier, M4.

a. If the software will not be subjected to IV&V, then M4 = 1.00.

111-14

b. If the software will be subjected to IV&V, then M4 depends on the average quality fac-
tor goal calculated in Step 3.a, and on Y = the percentage of the software that will be
subjected to IV&V.

Average quality factor goal is E M 4 = 1 + (0.60 x Y) / 100

G 1 + (0.25 x Y) / 100

A 1 + (0.10 x Y) / 100
N/I 1.00

5. Determine the estimated software cost increment in percent by calculating:

((M1 x M2 x M3 x M4) - 1) x 100%

6. Assign an overall software quality cost risk level.

a. If the estimated software cost increment is between 0% and 20%, then the overall soft-
ware quality cost risk level is low.

b. If the estimated software cost increment is between 20% and 50%, then the overall
software quality cost risk level is medium.

a. If the estimated software cost increment is greater than 50%, then the overall software
quality cost risk level is high.

The final software quality cost risk level, low, medium, or high, becomes part of the overall soft-
ware risk analysis described in Section 4.5.

The above ranges of software cost increments are suggestions. The acquiring manager must
exercise judgment in deriving a risk level from the estimated software cost increment.

The above approach assumes the software development mode is "embedded." This is true of most
Air Force software. If the software development mode is not embedded, the above approach will
give a upwardly biased estimate of the incremental cost.

4.4.4. Example

Consider an example of the effect of increased software size due to quality requirements. Let the
software size increase by 30% to implement the quality requirements. Let the quality factor goal for
the Reliability factor be E Let the average quality goal for all the other factors be G. Let 100% of
the software be subjected to IV&V. Then the individual cost multipliers are:

M1 = 1.37
M2 = 1.40
M3 = 0.83
M4 = 1.25

The total estimated software cost increment is ((1.37 x 1.40 x 0.83 x 1.25) - 1) x 100%, or 99%.

The ultimate result of this example cost analysis, including increased software size to implement
the quality requirements, the effect of the quality requirements on the cost drivers, and the IV&V
costs, is to increase the software development cost by 99%. The software is estimated to cost
almost twice what it would have if the quality requirements and the IV&V had not been present.

HI-15

4.5. Assess Overall Risk

If the acquiring manager is following the software risk management procedures in AFSC Pamphlet
800-45, as we recommend, when the time comes to set quality factor goals the manager will
already have a grasp of the proposed system's level of risk in five risk areas: technical risk, cost
risk, schedule risk, operational risk, and support risk. The software quality risk assessments
described in Sections 4.3 and 4.4 simply become additional components in these risk areas.

Specifically, the software quality technical risk becomes another driver in the category of technical
risk. With this addition, the technical risk drivers are:

- Requirements: complexity, size, stability, post deployment software support (PDSS), reli-
ability and maintainability, and additional software quality requirements.

- Constraints: computer resources, personnel, standards, government furnished equipment
and products, environment.

- Technology: language, hardware, tools, data rights, experience.
- Developmental approach: prototypes and reuse, documentation, environment, management

approach, integration.
The software quality cost risk becomes another driver in the category of cost risk. With this addi-
tion, the cost risk drivers are:

- Requirements: size, resource constraints, application, technology, requirements stability,
and additional software quality requirements.

- Personnel: availability, mix, experience, management environment.

- Reusable software: availability, modifications, language, rights, certification.

- Tools and environment: facilities, availability, rights, configuration management.

Thus, the acquiring manager considers the software quality technical and cost risks derived from
the Methodology along with all the other risk drivers to assess the overall software risk, as
described in AFSC Pamphlet 800-45. Once the risk is understood, it must be handled. The
pamphlet lists these ways of handling technical risk ([21, paragraph 2-16):
"When understanding of the risk factors, drivers, assessments, and evaluations is obtained, a risk
control course of action can then be established. Possible courses of action are:

"a. Avoidance. This might involve de-scoping the program's technical objectives to a more
achievable level, changing the developmental approach, and/or the use of a pre-planned product
improvement (p3I) approach to achieving the desired technical objectives through successive
enhancement to a more technically achievable baseline. [It might also involve reducing some of the
software quality factor goals to eliminate negative interrelationships.]

"b. Control. The program office could apply parallel development efforts, intense manage-
ment reviews, rapid prototyping, and/or conduct additional trade-off studies.

"c. Assumption. The program office can accept the technical risk involved and manage the
software development effort appropriately, while remaining cognizant of the decreased probability
of success.

"d. Transfer. Software requirements could be realigned through the requirements analysis
process, and, in some cases, be implemented via hardware vice software. Another possibility, in
some integrated systems, is to reassign the requirement to other elements of the system. Under no

111-16

circumstances should the software technical risk be transferred to the operational and PDSS phases

of the system life cycle."

The pamphlet lists these ways of handling cost risk ([21, paragraph 2-22):

"Cost risk control should always be accomplished on a total system life cycle cost analysis basis.
Possible courses of action for cost risk control include:

"a. Avoidance. Software cost avoidance is normally achieved by reducing the scope of the
software development effort, obtaining additional resources, "streamlined" acquisition practices,
and p3I software development. [It might also be achieved by reducing some of the software qual-
ity factor goals to reduce the incremental software quality costs.] Extreme caution should be exer-
cised if cost avoidance techniques such as eliminating documentation, reducing the nature and
scope of test, and eliminating the software quality requirements are employed.

"b. Control. Cost control can be achieved through stringent management reviews, continuous
updating of the cost estimates based upon real-time inputs of technical and schedule accomplish-
ments, and/or conducting additional trade-off studies to control cost.

"c. Assumption. The program office can accept the cost risk involved, manage the software
development process accordingly, and remain cognizant of the probability of successful program
accomplishment within the available financial resources.

"d. Transfer. Software functions that have a high cost risk could be transferred to related pro-
grams that have the resources to successfully implement these functions. Under no circumstances
should cost risk be transferred to the operational and PDSS phases of the system life cycle. Cost
risk transferred to these phases is totally counterproductive to reducing life cycle costs."
Thus, as part of the overall software risk analysis, the acquiring manager will decide whether to
change the software quality factor goals or to keep them as they are. In the former case the man-
ager must go back and re-analyze the software quality technical and cost risks. In the latter case the
manager can proceed.

4.6. Define Criteria and Metric Questions and Weights

At this point the acquiring manager knows which quality factors will be specified for the software
and goals for each factor. Now the manager must define the criteria and metrics that will be used
to calculate these factors' scores.

Table 3.2-1 of Volume II lists the criteria for each factor. The formula for calculating the factor
score is simply a weighted sum of the appropriate criteria scores, with each criterion being
weighted equally. For example, the Maintainability factor (MA) is composed of the Consistency
(CS), Visibility (VS), Modularity (MO), Self-Descriptiveness (SD), and Simplicity (SI) criteria.
Therefore, the formula for Maintainability is:

MA= CS +VS +MO+SD+SI

5

The manager derives the formula for each factor that has not been eliminated (each factor whose
goal is E, G, or A). These formulas then determine the minimum set of criteria needed to calculate
all the factors. (If some factors are eliminated, then some criteria may not be needed either.)

Once the minimum set of criteria is known, the manager can eliminate all metric questions that do
not belong to the minimum set of criteria.

11-17

4.7. Assign Numerical Factor Goals

At this point the acquiring manager has formulas for calculating all the factor scores. All that
remains is to decide which numerical factor scores will count as achieving a factor goal of E, of G,
and of A.

As discussed in Section 2.7, in the absence of Methodology experience on real projects, we
recommend that the quality factor goals be assigned to numerical ranges as in Volume I:

- A goal of E will be achieved if the factor score lies in the range 0.90 to 1.00.

- A goal of G will be achieved if the factor score lies in the range 0.80 to 1.00.

- A goal of A will be achieved if the factor score lies in the range 0.70 to 1.00.

4.8. Results

This concludes the software quality specification process using the Methodology. The acquiring
manager now has the following items that can be written into a contract:

- A set of required software quality factors and a required quality level (E, G, A) for each.

- A set of worksheets with metric questions and criteria, and formulas for calculating each
quality factor score from the criteria.

- A set of numerical factor score ranges that must be achieved before the system will be
accepted.

5. REFERENCES

[1] T.P. Bowen, G. B. Wigle, and J. T. Tsai "Specification of Software Quality Attributes,"
RADC-TR-85-37, Rome Air Development Center, Feb., 1985

[2] AFSC Pamphlet 800-45. Software Risk Management. June, 1987.

[3] Dynamics Research Corporation, "Operational Concepts Document for the Assistant for
Specifying the Quality of Software (ASQS)," 23 Oct 1987

[41 Software Productivity Solutions, Inc., "Software Requirements Specification for the Quality
Evaluation System (QUES), July, 1989.

[5] James L. Warthman, "Software Quality Measurement Demonstration Project I," Final
Technical Report, RADC-TR-87-247, Dec., 1987

[61 Scientific Applications International Corp and Software Productivity Solutions, Inc.,
"Software Quality Framework Issues," TR (Interim) Volume II, 2 June 89, prepared for
Rome Air Development Center

[7] Patricia Pierce, Richard Hartley, and Suellen Worrells, "Software Quality Measurement
Demonstration Project H," Final Technical Report, RADC-TR-87-164, Oct., 1987

[8] Michael S. Deutsch and Ronald R. Willis. Software Quality Engineering: A Total Technical
and Management Approach, Prentice-Hall, 1988.

[9] Barry W. Boehm, Software Engineering Economics, Prentice-Hall, 1981.

[10] DOD-STD-2167A, Military Standard Defense System Software Development, Feb., 1988

[11] Barry W. Boehm, "Ada COCOMO," Proceedings Third COCOMO User's Group, Software
Engineering Institute, Pittsburgh, PA, Nov., 1987.

111-18

SECTION IV

STUDY of AFSC MANAGEMENT INDICATORS

1. INTRODUCTION

The Air Force Systems Command (AFSC) has published two pamphlets in the area of software
quality management, hereafter collectively referred to as the "Indicators:"

- Software Management Indicators, AFSC Pamphlet 800-43. [1]

Software Quality Indicators, AFSC Pamphlet 800-14. [21

The Rome Air Development Center has sponsored ongoing research into a software quality
specification and measurement methodology, hereafter referred to as the "Methodology" The
Methodology is documented in a three volume set of guidebooks:

- Specification of Software Quality Attributes, RADC-TR-85-37, Vols. I-II. [3]

This study reports on the relationship between the Indicators and the Methodology and describes
how and to what extent the Indicators can be incorporated into the Methodology.

A summary of our recommended approach is as follows. All 6 Software Management Indicators
and 4 of the Software Quality Indicators are process-oriented and should not be directly
incorporated into the product-oriented Methodology. These 10 Indicators are grouped to form the
"Software Process Indicators." The remaining 3 Software Quality Indicators are product-oriented.
These are grouped to form the "Software Product Indicators" and are incorporated into the
Methodology. During development of a software project, the Software Process Indicators are
calculated every month based on a small amount of collected process data. At the end of each
development phase, a much larger amount of process and product data is collected. The process
data is used to calculate the Software Process Indicators as usual, and the product data is used to
answer the Methodology metric questions. The Methodology metric questions in turn are used to
calculate the Software Product Indicators and the Methodology metric, criteria, and factor scores.
With this combined approach, the acquisition manager obtains both an overall view of the entire
project's quality (from the Indicators) and a detailed view of each individual software document's
quality (from the Methodology).

Section 2 compares the philosophies behind the Indicators and the Methodology; this is needed to
understand how they can be combined. Section 3 describes our approach for combining the Indi-
cators and the Methodology and justifies it based on their characteristics. Section 4 shows in detail
how to calculate the three Software Product Indicators from data in the Methodology metric ques-
tions. Section 4 also recommends changing several existing metric questions and adding several
new ones to support calculating the Software Product Indicators. Section 5 discusses each of the
Software Process Indicators, stating why the Methodology does not provide the right kind of data
to calculate them. Section 6 summarizes the changes we recommend be made to the Methodology.
Section 7 summarizes a few errors we found in the Indicator pamphlets.

IV-I

2. PHILOSOPHY

This section compares and contrasts the overall purposes and philosophies of the Indicators and the
Methodology.

2.1. Similarities and Differences

The Indicators and the Methodology are similar in that:

- The objective in using each of them is to improve the quality of contracted software prod-
ucts.

- They each use metrics--numbers calculated by formulas from project data-to give insight
into the quality of the software products.

However, the Indicators and the Methodology take different approaches to achieving the objective
of improved software quality.

The fundamental difference is that the Indicators are process-related, while the Methodology is
product-related. The Indicators give information about the quality of the overall process of devel-
oping the software, not about any particular item under development. The Methodology gives
information about the quality of each software product--each Software Requirements Specification
document, Software Design Document, source code document, and so on-but gives information
about the overall process only indirectly.

Sections 2.2 and 2.3 expand on the philosophies behind the Indicators and the Methodology.

2.2. Indicators' Philosophy

Because they are intended to present a high-level, overall view of the project, the Indicators consist
of few metrics. The Software Management Indicators are:

- Computer Resource Utilization: percent of memory, CPU processing capacity, and 11O
channel capacity used by the target computer software.

- Software Development Manpower: number of staff working on the project.

- Requirements Definition and Stability: number of software units, number of software units
affected by Engineering Change Proposals (ECPs), and number of open action items.

- Software Progress-Development and Test: for each Computer Software Configuration
Item (CSCI), number of units designed, number of units coded and unit tested, and num-
ber of units integrated; and for qualification testing, number of tests scheduled, number of
tests passed, and number of unresolved problem reports.

- Cost/Schedule Deviations: differences between budgeted and actual cost and schedule at
this point in the project.

- Software Development Tools: the date on which each software development tool is needed
and the date on which it actually became available.

The data needed to compute these Software Management Indicators is project management status
information that cannot be obtained by looking at the products of software development.

The Software Quality Indicators are more like traditional software product metrics. To compute
each indicator, characteristics of each software product are counted, ratios are formed, and
weighted sums are done to produce a single number that lies between a minimum possible and a
maximum possible value. The Indicators are:

Completeness: the degree to which requirements, design, and code documents are fully
developed.

IV-2

- Design Structure: the degree to which detailed designs follow software engineering princi-
ples of good structure.

- Defect Density: the ratio of defects found during inspections of design and code documents
to the number of units, and the ratio of defects corrected to the number of units.

- Fault Density: the ratio of faults found during testing to the number of units, and the ratio
of faults corrected to the number of units.

- Test Coverage: the fraction of the total required capabilities that has been tested, and the
fraction of the software structure that has been tested.

- Test Sufficiency: estimate of the number of faults remaining in the software based on test-
ing progress.

- Documentation: the degree to which the design and code documents are modular, descrip-
tive, consistent, simple, expandable, and instrumented.

Again, the data needed to compute these Software Quality Indicators cannot be obtained by looking
at the products of software development alone. While some of these Indicators (Completeness,
Design Structure, and Documentation) depend only on product data, others (Defect Density, Fault
Density, Test Coverage, and Test Sufficiency) depend on project management status data as well,
such as defect data from inspections and fault data from testing. (This assertion will be justified in
Section 3.) Furthermore, each Software Quality Indicator is a conglomerate number that assesses
all the software documents together, not each document separately.

The Indicator pamphlets recommend that data for the Software Management Indicators and the
Software Quality Indicators be collected monthly. The Indicator values for the current month and
the prior twelve months should be plotted to spot trends. To determine quality levels, the plots
should also show the desired values for the Indicators; large discrepancies between desired and
actual values indicate areas of poor quality that may require management intervention.

Although the Indicator pamphlets recommend that reporting the Indicator data should be a contrac-
tual requirement, they do not recommend that particular values for the Indicators be a contractual
requiremewn For example, the contractor should be obligated to report the value of Fault Density
(number elf faults per unit) every month, but the contractor should not be obligated to achieve a
Fault Density value of, say, 0.1 faults per unit before the product will be accepted. The Indicators
are just that, indicators; they point out the possible existence of quality problems but are not accu-
rate enough for their values to be used as contractual requirements.

2.3. Methodology's Philosophy

The Methodology helps to meet the goal of improved quality in the final system by focusing on
each individual software document that is produced during development--each requirements,
design, and code document. A large set of data is collected for each document by answering many
metric questions. The metric questions yield numbers that are combined to give metrics. Selected
metric scores are then combined to give criteria. Finally, selected criteria scores are combined to
give factors. Factor scores lie in the range 0 to 1, with 0 representing low quality and 1
representing high quality.

The Methodology defines 13 factors, 29 criteria, 73 metrics, and 327 metric questions. Although
this is a large number of metric questions, not all metric questions are answered for each docu-
ment. Typically between 45 and 200 metric questions are answered for one document, depending
on the kind of document and the phase of development. Furthermore, the tailoring process
described below may eliminate certain factors altogether, along with the consequent metric ques-
tions.

IV-3

The top-level quality factors are:

- Efficiency: How well does the software utilize resources?
- Integrity: How secure is it?
- Reliability: What confidence can be placed in what is does?
- Survivability: How well will it perform under adverse conditions?
- Usability: How easy is it to use?
- Correctness: How well does it conform to the requirements?
- Maintainability: How easy is it to repair?
- Verifiability: How easy is it to verify its performance?
- Expandability: How easy is it to expand or upgrade its capability or performance?
- Flexibility: How easy is it to change?
- Interoperability: How easy is it to interface with another system?
- Portability: How easy is it to transport?
- Reusability: How easy is it to convert for use in another application?

An acquisition manager who wants to use the Methodology on a contracted software project begins
by tailoring the Methodology to match the project's characteristics. Some of the quality factors
may not be important for a particular project and would be tailored out. The manager then decides
on a required quality level for each remaining factor--excellent, good, or average. Tradeoff
analysis is done to determine the technical and cost risks of specifying these quality levels: How
technically feasible is it to achieve all these quality goals? How much more will it cost? After this
analysis, the manager may decide to change some of the factors' required quality levels, to reduce
the risk. The manager then puts requirements into the contract that the contractor must collect the
data needed to calculate the quality factors for each document, and that the calculated quality factor
values must exceed stated levels before the system will be accepted.
As the contractor produces each software document during development, the contractor (or an
independent verification and validation agency) also submits the data for all the metric questions
and calculates the metric, criteria, and factor scores for each document. The Methodology recom-
mends that this be done near the end of each stage of development, in conjunction with the formal
review for the acquiring agency that marks the transition to the next stage. Document scores sig-
nificantly below the contractually-required levels indicate poor quality and point out areas for cor-
rective action. The Methodology also recommends that the scores be plotted against time to spot
trends.

The Methodology provides a highly detailed view of the project's quality. Quality factor scores are
produced for each software document, from overall requirements and design documents to detailed
design and code documents for each unit. The acquisition manager can identify the particular areas
that have poor quality and that have high quality, then take selective action to improve just the areas
with low quality.

The acquisition manager does not get an overall picture of the quality of the software development
process directly from the Methodology, as is the case from the Indicators. However, the manager
can compute a single quality score for a document as a weighted sum of its factor scores, and he or
she can compute a quality score for the project as a whole as a weighted sum of all the documents'
quality scores. (The Methodology guidebooks do not describe procedures for doing this.) If all
the document scores are sufficiently high, then presumably the quality of the software development
process is high.

IV-4

2.4. Summary

Table 2-1 summarizes the Indicators' and the Methodology's philosophies.

Characteristic Indicators' Philosophy Methodology's Philosophy

Measurement focuses on: Development process. Development products.

Scope: Overall view of the quality of Detailed view of the quality of
the entire project. each software document.

Volume: 13 Indicators (6 Management, 13 factors, based on 29
7 Quality). criteria, based on 73 metrics.

Source of collected data: Project management Product documents.
information, a few product
documents.

When is data collected: Monthly. Near the end of each stage of
development.

Role in contract acquisition: Data collection is a contractual Data collection is a contractual
requirement. requirement and

Meeting stated factor score
levels is a contractual
requirement.

Role in contract monitoring: Discrepancies between actual Low factor values signal
and desired Indicator values possible areas for corrective
signal possible areas for action.
corrective action.

Table 2-1

3. COMBINING THE INDICATORS AND THE METHODOLOGY

3.1. Advantages of a Combination

Since both the Indicators and the Methodology have the same objective, to achieve higher quality
software, and since they both use metrics to quantify quality, it seems reasonable to combine the
Indicators and the Methodology. The advantages of doing so are:

- The two together give a fuller picture of a project's quality level. The Indicators give a
high-level summary and give process-related information (like manpower levels and soft-
ware tools status) that the Methodology does not. The Methodology gives a detailed report
on each software document's quality that the Indicators do not.

- Since some of the same data feeds into both the Indicators and the Methodology, less data
collection effort is needed if the Indicators and the Methodology are combined than if they
are both done separately.

However, since the Indicators and the Methodology differ so widely in their philosophies, it
follows that they cannot naturally be fully integrated. Also, combining them will require changing
them somewhat to accommodate each other. Section 3.2 describes how we propose to combine
the Indicators and the Methodology.

IV-5

3.2. Approach to a Combination

The individual Indicators will be reorganized into the Software Process Indicators and the Software
Product Indicators as follows:

Software Process Indicators:
- Computer Resource Utilization
- Software Development Manpower
- Requirements Definition and Stability
- Software Progress-Development and Test
- Cost/Schedule Deviations
- Software Development Tools

(The above Software Process Indicators were originally the Software Management Indica-
tors.)

- Defect Density
- Fault Density
- Test Coverage
- Test Sufficiency

(The above Software Process Indicators were originally four of the seven Software Quality
Indicators.)

Software Product Indicators:
- Completeness
- Design Structure
- Documentation

(The above Software Product Indicators were originally three of the seven Software Quality
Indicators.)

When a system is being acquired, the acquisition manager will go through the process of estab-
lishing Methodology quality factor goals, as described in Section 2.3. Then the manager will put
these requirements into the contract:

- Every month, the contractor shall supply the data needed to calculate the Software Process
Indicators.

- At the end of every development phase, the contractor shall supply the data needed to cal-
culate the Methodology quality factors for each CSCI.

- The Methodology quality factor values for each CSCI must meet or exceed certain levels
before the system will be accepted.

Every month, the Software Process Indicators will be calculated, but not the Software Product
Indicators. At the end of every development phase, the Methodology quality factors will be calcu-
lated, and the Software Product Indicators will be calculated from the same basic data.

IV-6

Thus, in months that do not mark the end of a development phase, the data collection and analysis
process will be:

Collecta Calculate

small amount Software

of dataProcess
l °fata v Indicators

In months that do mark the end of a development phase, the data collection and analysis process
will be:

Calculate
Software

SPrcessIroe
SIndicatorsd cors

dvo t ect a
large amount Approach

a od Idcato Softw

S T P IndicatorsorSAnswer
Framework

m etric'I

questions rCalculate
. .] Framework

~metrics,
/criteria, and

factors

If the data collection and calculations are to be done automatically by a tool such as the Quality
Evaluation System (QUES), then the QUES tool must operate in two different modes: one mode

for determining the Software Process Indicators each month, another mode for determining the
Software Process Indicators, Software Product Indicators, and Methodology scores at the end of a
development phase.

3.3. Rationale For This Approach

This approach integrates the Indicators and the Methodology only to a limited extent. Only the
Software Product Indicators (a subset of the former Software Quality Indicators) are integrated
with the Methodology. The Software Process Indicators (the rest of the former Software Quality
Indicators and all the former Software Management Indicators) are not integrated with the
Methodology. There are several reasons for limiting the extent of the integration:

-The philosophies are different. The Software Process Indicators measure process quality,
while the Methodology and the Software roduct Indicators measure product quality.

-The sources for data collection are different. The Methodology's and the Software Product

Indicators' data is obtained by analyzing just the software product documents. The

IV-7

Software Process Indicators require management status information that is not part of any
software product document.

The amount of data collected is different. The Software Process Indicators require rela-
tively little data; this amount of data can be collected monthly without placing an undue
burden on the developer. The Methodology and the Software Product Indicators require
massive amounts of data, too much to be collected every month. This data can be collected
practically only once per document, at the end of the development phase in which the doc-
ument was produced.

Thus, using this approach, the acquisition manager can monitor the quality of the software devel-
opment process on an ongoing, monthly basis, and can monitor the quality of each software prod-
uct document as it is produced.

We now turn to the details of implementing the combined Indicators and Methodology. Section 4
describes how to calculate the Software Product Indicators from the Methodology metric question
data. Section 5 discusses the Software Process Indicators.

4. CALCULATING THE SOFTWARE PRODUCT INDICATORS

A different set of Methodology metric questions is answered at the end of each development phase.
The Methodology organizes the metric questions for each phase into a worksheet. Here are the
worksheets for each phase:

- System/Software Requirements Analysis: Metric Worksheet 0.

- Software Requirements Analysis: Metric Worksheet 1.

- Preliminary Design: Metric Worksheet 2.

- Detailed Design: Metric Worksheet 3B (filled out separately for each unit), Metric Work-
sheet 3A (filled out with results from all the Metric Worksheet 3Bs).

- Coding and Unit Testing: Metric Worksheet 4B (filled out separately for each unit), Metric
Worksheet 4A (filled out with results from all the Metric Worksheet 4Bs).

- CSC Integration and Testing, CSCI-Level Testing, and System Integration and Testing:
Selected questions from Worksheets 0, 1, 2, 3A, and 4A are answered.

The metric o, Iestions from these Methodology Metric Worksheets supply much of the data needed
to calculate . of the Software Product Indicators. The next subsections describe how to do this.
In some cases the requisite data is already available, and we show how to calculate both the Indi-
cator and the metric question from that data. In other cases the data is not available in quite the
format needed to support the Indicator, and we recommend how to change the applicable metric
question to support both the Methodology and the Indicator. In still other cases the data for the
Indicator is not available at all, and we recommend adding a metric question to the Methodology
that will also support the Indicator.

In the next subsections, we will refer to "Phase 0" as an abbreviation for the System/Software
Requirements Analysis phase, to "Phase 1" for the Software Requirements Analysis phase, to
"Phase 2" for the Preliminary Design phase, to "Phase 3" for the Detailed Design phase, to "Phase
4" for the Coding and Unit Testing phase, and to "Testing" for the CSC Integration and Testing,
CSCI-Level Testing, and System Integration and Testing phases.

4.1. Completeness

The Completeness Indicator consists of ten components that are individually calculated, then com-
bined in a weighted sum to give an overall score. The Indicator pamphlets state that the weights
depend on the development phase; that is, some components apply only during certain phases.
Below we indicate how each component is defined, what its parameters are, and the phases during

IV-8

which it applies. (The Indicator pamphlets do not specify the phases during which each
component applies; these are our own interpretations. We have taken the definitions and the
parameters directly from the Indicator pamphlets, even though sometimes the terminology is not
consistent with DOD-STD-2167A.) Then we describe how to derive its parameter values from the
Methodology metric questions on the worksheets for the applicable phases.

4.1.1. Completeness Component C1: Functions Satisfactorily Defined.

Definition: C1 = P2 - PI
P2

Parameters: P1 = Number of functions not adequately defined or specified.

P2 = Total number of functions.

Applicable Phases: 0, 1, 2, 3.

Metric question CP. 1 (1), asks, "Are all inputs, processing, and outputs clearly and precisely
defined?" This is like asking, "Does C1 equal unity?" We recommend that metric question
CP. 1(1) on metric worksheets 0, 1, and 2 be changed as follows:

CP. 1 (1) a. How many functions in this system?

b. How many functions have clearly and precisely defined inputs, processing, and
outputs?

c. Calculate b/a and enter score.

We recommend that metric question CP.I(1) on metric worksheet 3B be changed as follows:

CP. 1(1) d. How many functions in this unit?

e. How many functions have clearly and precisely defined inputs, processing, and
outputs?

f. Calculate b/a and enter score.

We recommend that summary metric question CP. 1 (1) on metric worksheet 3A be changed as
follows:

CP. 1(1) a. How many total functions (sum of all Worksheet 3B Question CP.1(1)d val-
ues)?

b. How many total functions have clearly and precisely defined inputs, process-
ing, and outputs (sum of all Worksheet 3B, Question CP. I (1)e values)?

c. Calculate b/a and enter score.

Then the value (c) from the metric worksheet for the current phase (0, 1, 2, or 3A) is the
desired component C1 .

4.12. Completeness Component C2 : Defined Data Item.

Definition: C2 =P4 - P
P4

Parameters: P3 = Number of data items not defined.
P4 = Total number of data items.

Applicable Phases: 0, 1, 2, 3, 4.

Metric question CP.1(2) on metric worksheets 0, 1, 2, 3A, 3B, 4A, and 4B provides the
requisite data. Here is the metric question:

IV-9

CP. 1(2) a. How many data references are identified?

b. How many identified data references are documented with regard to source,
meaning, and format?

c. Calculate b/a and enter score.

The value (c) from the metric worksheet for the current phase (0, 1, 2, 3A, or 4A) is the
desired component C2.

4.1.3. Completeness Component C3: Defined Functions Used.

Definition: C3 =P6- P5
P6

Parameters: P5 = Number of defined functions not used.

P6 = Total number of defined functions = P2 - P1.

Applicable Phases: 0, 1.

Metric question CP.1(5) asks, "Have all defined functions (i.e., documented with regard to
source, meaning, and format) been referenced?" This is like asking, "Does C3 equal unity?"
We recommend that metric question CP. 1 (5) on metric worksheets 0 and 1 be changed as fol-
lows:

CP.1 (5) a. How many defined functions (i.e. with clearly and precisely described inputs,
processing, and outputs) in this system?

b. How many defined functions are referenced?

c. Calculate b/a and enter score.

Then the value (c) the metric worksheet for the current phase (0 or 1) is the desired component
C3 .

4.1.4. Completeness Component C4: Defined Referenced Functions.

Definition: C4 = P8 - P7
P8

Parameters: P7 = Number of functions referenced by defined functions but not
defined.

P8 = Total number of functions referenced by defined functions.

Applicable Phases: 0, 1.

Metric question CP. 1 (7) asks, "Have all referenced functions been defined (i.e., documented
with precise inputs, processing, and output requirements)?" This is like asking, "Does C4
equal unity?" We recommend that metric question CP.1(7) on metric worksheets 0 and I be
changed as follows:

CP. 1(7) a. How many functions in this system are referenced by other defined functions?
b. How many referenced functions are themselves defined (i.e. with clearly and

precisely described inputs, processing, and outputs)?

c. Calculate b/a and enter score.

Then the value (c) the metric worksheet for the current phase (0 or 1) is the desired component
C4 .

IV-10

4.15. Completeness Component C5: All Condition Options Are Used at Decision Points.
Definition: C5 = P10 - P9

P10
Parameters: P9 = Number of decision points not using all conditions or options.

P10 = Total number of decision points.
Applicable Phases: 2, 3, 4

Metric question CP. 1(9) asks, "Are all conditions and alternative processing options defined
for each decision point?" This is an undiscriminating question. The Completeness Indicator
actually has four components (C5, C6, C8, and C9) that measure different things about decision
points. We recommend that metric question CP. 1(9) on metric worksheet 2 be changed as
follows:
CP.1 (9) a. How many decision points?

b. How many decision points have identified all possible conditions or options?
c. Calculate b/a and enter score.

We recommend that metric question CP. 1 (9) on metric worksheets 3B and 4B be changed as
follows:
CP.1 (9) d. How many decision points?

e. How many decision points have identified all possible conditions or options?

f. Calculate b/a and enter score.
We recommend that summary metric question CP. 1(9) on metric worksheets 3A and 4A be
changed as follows:
CP.1(9) a. How many (total) decision points (sum of all Worksheet (3B, 4B) Question

CP. 1 (9)d values)?
b. How many (total) decision points have identified all possible conditions or

options (sum of all Worksheet { 3B, 4B) Question CP. 1 (9)e values)?
c. Calculate b/a and enter score.

Then the value (c) from the metric worksheet for the current phase (2, 3A, or 4A) is the desired
component C5.
Later we will recommend adding new metric questions to support the other Completeness Indi-
cator components that measure decision points.

4.1.6. Completeness Component C6: All Condition Options With Processing Are Used at Deci-
sion Points.

Definition: C6- P 12-P11

P 12

Parameters: PI1 = Number of condition options without processing.

P12 = Total number of condition options.
Applicable Phases: 2, 3, 4.
No metric question currently provides this data. We recommend that a new metric question,
CP.1(12), be added to the existing Completeness Checklist metric, CP.1. This question
should be added to metric worksheet 2:

Il1

CP.1(12) a. How many condition options in all decision points?
b. How many condition options have non-null processing associated with them?

c. Calculate b/a and enter score.
This question should be added to metric worksheets 3B and 4B:

CP.1(12) d. How many condition options in all decision points?

e. How many condition options have non-null processing associated with them?
f. Calculate b/a and enter score.

This question should be added to metric worksheets 3A and 4A:

CP.1(12) a. How many (total) condition options (sum of all Worksheet (3B, 4B } Question
CP. 1(1 2)d values)?

b. How many (total) condition options have non-null processing associated with
them (sum of all Worksheet (3B, 4B) Question CP. 1(12)e values)?

c. Calculate b/a and enter score.
Then the value (c) from the metric worksheet for the current phase (2, 3A, or 4A) is the desired
component C6.

4.1.7. Completeness Component C7: All Calling Routine Parameters Agree With the Called Rou-
tine's Defined Parameters.

Definition: C7 P14 - P13
P 14

Parameters: P13 = Number of calling routines with calling parameters that do not
agree with defined parameters.
P14 = Total number of calling routines.

Applicable Phases: 2, 3, 4.
No metric question currently provides this data. We recommend that a new metric question,
CP.1(13), be added to the existing Completeness Checklist metric, CP.1. This question
should be added to metric worksheet 2:

CP.1(13) a. How many subroutine calls are made?

b. How many subroutine calls are there in which the actual parameters agree with
the called subroutine's formal parameters?

c. Calculate b/a and enter score.

This question should be added to metric worksheets 3B and 4B:

CP.1(13) d. How many subroutine calls are made?

e. How many subroutine calls are there in which the actual parameters agree with
the called subroutine's formal parameters?

f. Calculate b/a and enter score.

This question should be added to metric worksheets 3A and 4A:

CP.1(13) a. How many (total) subroutine calls (sum of all Worksheet (3B, 4B) Question
CP. I (13)d values)?

IV-12

b. How many (total) subroutine calls agree with the called subroutine's formal
parameters (sum of all Worksheet 13B, 4B) Question CP.1(13)e values)?

c. Calculate b/a and enter score.
Then the value (c) from the metric worksheet for the current phase (2, 3A, or 4A) is the desired
component C7.

4.1.8. Completeness Component C8: All Condition Options Are Set.

Definition: C8= P12-PI5P12

Parameters: P15 = Number of condition options that are not set.

P12= Total number of condition options (see Section 3.3.1.6).
Applicable Phases: 2, 3, 4.
The Indicator pamphlets do not describe what is meant by a condition option that is "set" or
"not set." Lacking a definition, we were unable to determine whether the Methodology metric
questions supply this data. This is a deficiency in the Indicator pamphlets.

4.1.9. Completeness Component C9: All Processing Follows Set Condition Options.
Definition: C9= P17 - P 16

P17

Parameters: P16 = Number of condition options that are set but have no processing
associated with the option.
P17 = Number of set condition options = P12 - P15.

Applicable Phases: 2, 3, 4.
The Indicator pamphlets do not describe what is meant by a condition option that is "set" but
has no "associated processing." Lacking a definition, we were unable to determine whether the
Methodology metric questions supply this data. This is a deficiency in the Indicator pamphlets.

4.1.10. Completeness Component CIO: All Data Items Have a Destination.

Definition: C = P4 - P1 8
P4

Parameters: P18 = Number of data references having no destination.

P4 = Total number of data items (see Section 3.3.1.2).
Applicable Phases: 0, 1, 2, 3, 4.
Metric question CP. 1 (3) on metric worksheets 0, 1, 2, 3A, and 4A provides the requisite data.
Here is the metric question:
CP.1(3) a. How many data items are defined (i.e., documented with regard to source,

meaning, and format)?
b. How many data items are referenced?
c. Calculate b/a and enter score.

The value (c) from the metric worksheet for the current phase (0, 1, 2, 3A, or 4A) is the
desired component CIO.

IV-13

4.1.11. Final Completeness Indicator Value.

Once the components CI through CIO have been calculated, the final Completeness Indicator value
is given by one of the formulas below, depending on the development phase. By default, all appli-
cable components for a phase are weighted equally.

Ehase Completeness Indicator Formula

0 C1 + C2 + C3 + C4 + CIO
5

1 C1 + C2 + C3 + C4 + C1
5

2 C 1 +C 2 +C 5 +C6+C 7 +C8 +C9 + CIO
8

3 CI +C2+C5 +C 6 + C 7 +C 8 +C9 +CIO

8

4 C2 + C 5 +C 6 +C 7 + C 8 +C 9 + C1 0
7

4.2. Design Structure

The Design Structure Indicator consists of six components that are individually calculated, then
combined in a weighted sum to give an overall score. The Indicator pamphlets state that this indi-
cator should be calculated starting with the Preliminary Design Review, that is, at the end of phases
2, 3, and 4. Below we indicate how each component is defined and what its parameters are. Then
we describe how to derive its parameter values from the Methodology metric questions on the
worksheets for the applicable phases.

4.2.1. Design Structure Component DI: Design Properly Organized and Structured.

Definition: D1 = 1 if yes, 0 if no.

Criterion: Is the design organized top-down, bottom-up, or object-oriented as
applicable, and is the design structured?

Metric question MO. 1(2) on metric worksheets 3A and 4A provides the requisite data. This
question asks, "Are all top-level CSCs developed according to structured design techniques?"
(metric worksheet 2) "Are all CSCs developed according to structured design techniques?"
(metric worksheet 3A) "Are all units coded and tested according to structural techniques?"
(metric worksheet 4A) This is the essentially the same question as D1 .

4.2.2. Design Structure Component D2 : Unit Independence.

Definition: D 2 =S-$2SI

Parameters: Si = Software size expressed in terms of units.

S2 = Number of units dependent on the source of input data (a result of
prior processing or calling sequence) or destination of output data (post-
processing or display).

Metric question SI.1(2) on metric worksheets 3A and 4A provides the requisite data. Here is
the metric question:

S I.1(2) a. How many applicable units?

IV-14

b. How many units with answer of Y [to the question, Is the unit independent of
the source of the input and the destination of the output]?

c. Calculate b/a and enter score.

Metric question SI. 1(2) does not currently appear on metric worksheet 2. To support the
Design Structure Indicator during phase 2, we recommend that it be added, as follows:

SI. 1(2) a. How many CSC& in the software?

b. How many CSCs are independent of the source of the input and the destination
of the output?

c. Calculate b/a and enter score.

The value (c) from the metric worksheet for the current phase (2, 3A, or 4A) is the desired
component D2 .

4.2.3. Design Structure Component D3: Units Not Dependent On Prior Processing.

Definition: D 3 - S1-S3
S1

Parameters: S I = Software size expressed in terms of units.

S3 = Number of units dependent on prior processing.

Metric question SI.1(3) on metric worksheets 3A and 4A provides the requisite data. Here is
the metric question:

SI. 1(3) a. How many applicable units?

b. How many units with answer of Y [to the question, Is the unit independent of
the knowledge of prior processing]?

c. Calculate b/a and enter score.

Metric question SI.1(3) does not currently appear on metric worksheet 2. To support the
Design Structure Indicator during phase 2, we recommend that it be added, as follows:

SI.1(3) a. How many CSCs in the software?

b. How many CSCs are independent of the knowledge of prior processing?

c. Calculate b/a and enter score.

The value (c) from the metric worksheet for the current phase (2, 3A, or 4A) is the desired
component D3 .

4.2.4. Design Structure Component D4 : Data Base Size.

Definition: D4 - S-
S4

Parameters: S4 = Number of data base items. This is the same as P4 (see Section
3.3.1.2).

S5 = Total number of unique data base items, including local and global
data bases.

First, this component is defined incorrectly. The ideal situation is when every data base item is
unique; when there are no instances of two or more items storing the same data. In other
words, S4 ideally should equal S5 ; in a poor design, S4 will be greater than S5. But with the

IV-15

above definition of D4 , if S4 equals S5, D4 equals 0, not 1; and the larger (poorer) S4 becomes,
the closer to 1 (better) D4 gets. This is backwards. The correct definition is D4 = S5/S4.

No metric question currently provides this data. In the Methodology, this Indicator component
fits most closely under the Simplicity criterion, yet none of the existing Simplicity metrics deal
with data base items. We therefore recommend that a new metric, Data Simplicity, SI.7, be
added to the Simplicity criterion. We recommend that a new metric question, SI.7(1), be
added to metric worksheets 2, 3A, and 4A:

SI.7(1) a. How many total data base items?

b. How many unique data base items? (If the same value is stored in more than
one data base item, all of those data base items count as one unique data base
item.)

c. Calculate b/a and enter score.

The value (c) from the metric worksheet for the current phase (2, 3A, or 4A) is the desired
component D4.

4.2.5. Design Structure Component D5 : Data Base Compartmentalization.

Definition: D5 - - S6
S4

Parameters: S4 = Number of data base items. This is the same as P4 (see Section
3.3.1.2).

S6 = Number of data base segments.

The Indicator pamphlets do not define what a "data base segment" is; this is a deficiency in the
Pamphlets. We interpret a "data base segment" to be "the set of data items referenced by a
single access to the data base." That is, if a single subroutine call (or whatever is used to
access the data base) yields more than one data base item, those items are considered to be in
the same data base segment; they cannot be accessed separately.

If that is what a data base segment is, then this component is defined incorrectly. The ideal sit-
uation is when every data base item is in a separate data base segment; when each item can be
accessed independently of all the others. In other words, S6 ideally should equal S4 ; in a poor
design, S6 will be less than S4. But with the above definition of D5 , if S6 equals S4, D5 equals
0, not 1; and the smaller (poorer) S6 becomes, the closer to I (better) D 5 gets. This is back-
wards. The correct definition is D5 = S6/S4.

No metric question currently provides this data. In the Methodology, this Indicator component
fits most closely under the Simplicity criterion, under the new metric Data Simplicity, SI.7.
We recommend that a new metric question, SI.7(2), be added to metric worksheets 2, 3A, and
4A:

SI.7(2) a. How many total data base items?

b. How many total data base segments? (If a single access to the data base yields
more than one data base item, all of those data base items count as one data base
segment.)

c. Calculate b/a and enter score.

The value (c) from the metric worksheet for the current phase (2, 3A, or 4A) is the desired
component D5.

IV- 16

4.2.6. Design Structure Component D6 : Unit Single Entrance/Single Exit.

Definition: D6 S7
Si

Parameters: S = Software size expressed in terms of units.

S7 = Number of units with a single entrance/single exit. Branch on
error detection is not considered as a multiple exit condition.

Metric question SI.I(5) on metric worksheets 3B and 4B approaches this metric in a different
way. Here is the metric question:

SI.1(5) d. How many entrances into the unit?

e. How many exits from the unit?

f. Calculate and enter score.

The ideal situation is when a unit has just one entrance and just one exit. Both the Indicator
component and the Methodology metric question would give this unit a score of 1. The differ-
ence comes when a unit deviates from this ideal. Say a unit has two entrances and one exit.
The Methodology metric question would give this unit a score of 3/4, but the Indicator compo-
nent would give it a score of 0. The Methodology metric question gradually increases the
penalty the more entrances and exits a unit has. The Indicator component assesses the maxi-
mum possible penalty as soon as a unit has more than one entrance or exit. The latter approach
is more in accord with current software engineering practice.

We therefore recommend that metric question SI.1(5) on metric worksheets 3B and 4B be
changed as follows:

SI. 1(5) d. Does the unit have just one entrance and just one exit? Y/N

We recommend that metric question SI. 1 (5) on metric worksheets 3A and 4A be changed as
follows:

SI. 1(5) a. How many applicable units (answer of Y or N on [3B, 4B))?

b. How many units with answer of Y (see (3B, 4B))?

c. Calculate b/a and enter score.
Metric question SI. 1(5) does not currently appear on metric worksheet 2. To support the
Design Structure Indicator during phase 2, we recommend that it be added, as follows:

SI.1(5) a. How many CSCs in the software?

b. How many CSCs have just one entrance and just one exit?

c. Calculate b/a and enter score.

The value (c) from the metric worksheet for the current phase (2, 3A, or 4A) is the desired
component D6 .

4.2.7. Final Design Structure Indicator Value.

Once the components Di through D6 have been calculated, the final Design Structure Indicator
value is given by the formula below. By default, all components are weighted equally.

Design Structure - D I + D2 + D 3 + D4 + D5 + D6
6

IV- 17

4.3. Documentation

The Documentation Indicator is based on subjective evaluations of the quality of the system's doc-
umentation (all documents except source code) and of the quality of the system's source code.
Note that this does not refer to the quality of the system's design itself or the quality of the sys-
tem's code itself, but rather to the quality of the documentation that describes the design and the
quality of the listings that carry the source code.

First, the set of all non-source-code documents is rated for the following characteristics on a scale
from I to 6, where I stands for the lowest possible quality and 6 the highest:

D1 = Modularity of the documentation (1 to 6).
D2 = Descriptiveness of the documentation (1 to 6).
D3 = Consistency of the documentation (1 to 6).
D4 = Simplicity of the documentation (1 to 6).
D5 = Expandability of the documentation (I to 6).
D6 = Testability or instrumentation characteristics of the documentation (I to 6).

Then the set of all source listings is rated for the same characteristics on a scale from 1 to 6:

S1 = Modularity of the source listings (I to 6).
S2 = Descriptiveness of the source listings (1 to 6).
S3 = Consistency of the source listings (1 to 6).
S4 = Simplicity of the source listings (1 to 6).
S5 = Expandability of the source listings (I to 6).
S6 = Testability or instrumentation characteristics of the source listings (I to 6).

The Documentation Indicator is calculated as a weighted sum of these twelve numbers and nor-
malized to lie in the range 0 to 1. Assuming all the weights are the same, the formula is:

Documentation = D I +D2 +D3 +D4 +D5 +D6 +S +$2+$3+$4+$5+$6
72

Incidentally, paragraph 2-66 of AFSC Pamphlet 800-14, the Software Quality Indicators Pam-
phlet, states that the Documentation Indicator has a range of values between 1 and 6. This is
inconsistent with the formula given in paragraph 2-62 (and reproduced above), which yields a
range of values between 0 and 1.

The Methodology has a metric DO.2, Well-Structured Documentation, that asks questions similar
to those above. But while the Documentation Indicator has a range of ratings from I to 6, the
Methodology metric questions have yes-no, all-or-nothing answers. For example, here is metric
question DO.2(1) from metric worksheet 0:

DO.2(1) Is all the documentation structured and written clearly and simply such that pro-
cedures, functions, algorithms, etc. can be easily understood? Y N N/A

Both to support the Indicators and to obtain a more precise rating of documentation quality, the
DO.2 metric questions should be changed to ask for ratings on a scale of 1 to 6. Furthermore, the
DO.2 metric questions do not cover all six characteristics of the Documentation Indicator, requiring
new metric questions to be added. With these changes, the Documentation Indicator components
DI through D6 and SI through S6 are obtained directly from the appropriate Methodology metric
questions, and are then combined by the above formula to yield the Indicator score.

43.1. Changes to Existing Metric Questions for Documentation Indicators.

We recommend changing metric question DO.2(l) on metric worksheets 0, 1, 2, and 3A to the
following. This yields the Documentation Indicator component D4 (simplicity of the documenta-
tion).

IV-18

DO.2(l) a. Are all the documents structured and written clearly and simply such that
procedures, functions, algorithms, etc. can be easily understood? Rate on a
scale of 1 to 6 (l=poor, 6=excellent).

b. Calculate a/6 and enter score.

We recommend changing metric question DO.2(1) on metric worksheet 4A to the following. This
yields the Documentation Indicator component D4 (simplicity of the documentation) during phase
4.

DO.2(1) a. Are all the documents other than source listings structured and written clearly
and simply such that procedures, functions, algorithms, etc. can be easily
understood? Rate on a scale of 1 to 6 (1=poor, 6=excellent).

b. Calculate a/6 and enter score.

We recommend changing metric question DO.2(2) on metric worksheets 0, 1, 2, and 3A to the
following. This metric question is not part of the Documentation Indicator.

DO.2(2) a. Do the documents clearly depict control and data flow (e.g., graphic portrayal
with accompanying explanations or PDL)? Rate on a scale of 1 to 6 (1=poor,
6=excellent).

b. Calculate a/6 and enter score.
We recommend changing metric question DO.2(3) on metric worksheets 0, 1, 2, 3A, and 4A to the
following. This metric question is not part of the Documentation Indicator.

DO.2(3) a. Does all documentation contain an indexing scheme which facilitates quickly
locating and accessing various information in the document (e.g. hierarchically
structured table of contents, inserted tabs)? Rate on a scale of 1 to 6 (1=poor,
6=excellent).

b. Calculate a/6 and enter score.
We recommend changing metric question DO.2(4) on metric worksheets 0, 1, 2, and 3A to the
following. This yields the Documentation Indicator component D1 (modularity of the documenta-
tion).

DO.2(4) a. Do the documents have separate volumes or separations within a single volume
based on system functions or software functions? Rate on a scale of 1 to 6
(1 =poor, 6=excellent).

b. Calculate a/6 and enter score.
We recommend changing metric question DO.2(4) on metric worksheet 4A to the following. This
yields the Documentation Indicator component Di (modularity of the documentation) during phase
4.

DO.2(4) a. Do the documents other than source listings have separate volumes or
separations within a single volume based on system functions or software
functions? Rate on a scale of I to 6 (1 =poor, 6=excellent).

b. Calculate a/6 and enter score.

We recommend changing metric question DO.2(5) on metric worksheets 0, 1, and 2 to the fol-
lowing. This metric question is not part of the Documentation Indicator.

DO.2(5) a. Does the documentation completely characterize the operational capabilities of
the software (e.g., identify all the performance parameters and limitations)?
Rate on a scale of I to 6 (1 =poor, 6=excellent).

b. Calculate a/6 and enter score.

IV- 19

We recommend changing metric question DO.2(6) on metric worksheets 0 and 1 to the following.
This yields the Documentation Indicator component D2 (descriptiveness of the documentation)
during phases 0 and 1.

DO.2(6) a. Does the documentation contain comprehensive descriptions of all system and
software functions including functional processing, functional algorithms, and
functional interfaces? Rate on a scale of 1 to 6 (1 =poor, 6=excellent).

b. Calculate a/6 and enter score.

We recommend changing metric question DO.2(7) on metric worksheets 2 and 3A to the follow-
ing. This yields the Documentation Indicator component D2 (descriptiveness of the documenta-
tion) during phases 2 and 3.

DO.2(7) a. Does the documentation contain comprehensive descriptions of all algorithms
used and their limitations, including inputs, outputs, and required precision?
Rate on a scale of 1 to 6 (1=poor, 6=excellent).

b. Calculate a/6 and enter score.

We recommend adding metric question DO.2(7) to metric worksheet 4A, as follows. This yields
the Documentation Indicator component D2 (descriptiveness of the documentation) during phase 4.

DO.2(7) a. Do the documents other than source listings contain comprehensive descriptions
of all algorithms used and their limitations, including inputs, outputs, and
required precision? Rate on a scale of 1 to 6 (1 =poor, 6=excellent).

b. Calculate a/6 and enter score.

432. New Metric Questions for Documentation Indicators.

At this point we have exhausted the existing DO.2 metric questions and have covered the Docu-
mentation Indicator components modularity, descriptiveness, and simplicity. The Documentation
Indicator components consistency, expandability, and testability or instrumentation characteristics
have not been covered. New DO.2 metric questions must be added.

We recommend adding metric question DO.2(9) to metric worksheets 0, 1, 2, and 3A, as follows.
This yields the Documentation Indicator component D3 (consistency of the documentation).

DO.2(9) a. Are each of the documents internally consistent, and are all the documents con-
sistent with each other? Rate on a scale of 1 to 6 (1 =poor, 6=excellent).

b. Calculate a/6 and enter score.

We recommend adding metric question DO.2(9) to metric worksheet 4A, as follows. This yields
the Documentation Indicator component D3 (consistency of the documentation) during phase 4.

DO.2(9) a. Are each of the documents other than source listings internally consistent, and
are all the documents consistent with each other? Rate on a scale of 1 to 6
(1 =poor, 6=excellent).

b. Calculate a/6 and enter score.

We recommend adding metric question DO.2(10) to metric worksheets 0, 1, 2, and 3A, as fol-
lows. This yields the Documentation Indicator component D 5 (expandability of the documenta-
tion).

DO.2(10) a. Are all of the documents able to be easily expanded to incorporate new material?
Rate on a scale of I to 6 (l=poor, 6=excellent).

b. Calculate a/6 and enter score.

IV-20

We recommend adding metric question DO.2(10) to metric worksheet 4A, as follows. This yields
the Documentation Indicator component D5 (expandability of the documentation) during phase 4.

DO.2(10) a. Are all of the documents other than source listings able to be easily expanded to
incorporate new material? Rate on a scale of I to 6 (1=poor, 6=excellent).

b. Calculate a/6 and enter score.

We recommend adding metric question DO.2(1 1) to metric worksheets 0, 1, 2, and 3A, as fol-
lows. This yields the Documentation Indicator component D6 (testability of the documentation).

DO.2(1 1) a. Are all of the documents written so that the software can be easily tested? Rate
on a scale of 1 to 6 (1=poor, 6=excellent).

b. Calculate a/6 and enter score.

We recommend adding metric question DO.2(1 1) to metric worksheet 4A, as follows. This yields
the Documentation Indicator component D6 (testability of the documentation) during phase 4.

DO.2(1 1) a. Are all of the documents other than source listings written so that the software
can be easily tested? Rate on a scale of 1 to 6 (1=poor, 6=excellent).

b. Calculate a/6 and enter score.

4.3.3. New Metric Questions for Source Listing Indicators.

At this point we have covered the Documentation Indicator components D1 through D6. None of
the Documentation Indicator components dealing with source listings during phase 4 (S 1 through
S6) has been covered. New DO.2 metric questions must be added to metric worksheet 4A.

We recommend adding metric question DO.2(12) on metric worksheet 4A, as follows. This yields
the Documentation Indicator component S4 (simplicity of the source listings) during phase 4.

DO.2(12) a. Are all the source listings structured and written clearly and simply such that
procedures, functions, algorithms, etc. can be easily understood? Rate on a
scale of 1 to 6 (l=poor, 6=excellent).

b. Calculate a/6 and enter score.

We recommend adding metric question DO.2(13) on metric worksheet 4A, as follows. This yields
the Documentation Indicator component SI (modularity of the source listings) during phase 4.

DO.2(1 3) a. Do the source listings have separate volumes or separations within a single vol-
ume based on system functions or software functions? Rate on a scale of 1 to 6
(1 =poor, 6=excellent).

b. Calculate a/6 and enter score.

We recommend adding metric question DO.2(14) to metric worksheet 4A, as follows. This yields
the Documentation Indicator component S2 (descriptiveness of the source listings) during phase 4.

DO.2(14) a. Do the source listings contain comprehensive descriptions of the algorithms
used for each module and their limitations, including inputs, outputs, and
required precision? Rate on a scale of I to 6 (l=poor, 6=excellent).

b. Calculate a/6 and enter score.

We recommend adding metric question DO.2(15) to metric worksheet 4A, as follows. This yields
the Documentation Indicator component S3 (consistency of the source listings) during phase 4.

DO.2(15) a. Are each of the source listings internally consistent, and are all the source list-
ings consistent with each other? Rate on a scale of I to 6 (l=poor,
6=excellent).

IV-21

b. Calculate a/6 and enter score.

We recommend adding metric question DO.2(16) to metric worksheet 4A, as follows. This yields
the Documentation Indicator component S5 (expandability of the source listings) during phase 4.

D0.2(16) a. Are all of the source listings able to be easily expanded to incorporate new mate-
rial? Rate on a scale of 1 to 6 (1=poor, 6=excellent).

b. Calculate a/6 and enter score.

We recommend adding metric question DO.2(17) to metric worksheet 4A, as follows. This yields
the Documentation Indicator component D6 (testability of the documentation) during phase 4.

DO.2(17) a. Are all of the source listings written so that the software can be easily tested?
Rate on a scale of 1 to 6 (1 =poor, 6=excellent).

b. Calculate a/6 and enter score.

4.3.4. Final Documentation Indicator Value.

During phases 0, 1, 2, and 3, once the components D1 through D6 have been calculated, the final
Documentation Indicator value is given by the formula below. By default, all components are
weighted equally.

Documentation - D1 + D 2 + D 3 + D4 + D5 + D66

During phase4, once the components D1 through D6 and SI through S6 have been calculated, the
final Documentation Indicator value is given by the formula below. By default, all components are
weighted equally.

Documentation D +D2 +D3 +D4 +D5 +D 6 + S1 + S 2 +S3 +S4 +S5 +S 6
12

S. CALCULATING THE SOFTWARE PROCESS INDICATORS

Since the Software Process Indicators are calculated primarily from process-oriented data, they are
not integrated with the Methodology, as the Software Product Indicators are. Data for the
Software Process Indicators is collected every month. At the end of each development phase, one
set of data for the Software Process Indicators is collected, and another set of data for the
Methodology metric questions and the Software Product Indicators is collected. Although these
two sets of data are largely disjoint, there are a few data items that overlap.

The sections below discuss areas of overlap between the Software Process Indicators data and the
Methodology metric question data. However, the amount of overlap is not sufficient to justify
integrating the Software Process Indicators into the Methodology, as was possible with the
Software Product Indicators.

Some of the Software Process Indicators require data that is not collected by the Methodology
metric questions. This data must still be collected by some other means, such as the QUES
automated tool. However it is collected, this data is not part of the Methodology, which is devoted
to software product quality, not process quality.

5.1. Computer Resource Utilization

The Computer Resource Utilization Indicator shows the amount allocated and the amount used for
three resources: memory, CPU, and 1UO. Starting with metric worksheet 2, the Methodology col-
lects the same data to compute the Augmentability criterion, AT. (This starts during phase 2
because during phases 0 and 1, the software has not yet been designed in the detail required to

IV-22

estimate or measure resource amounts used.) During phase 2 and after, in the months when
Methodology data is collected, the data for this Indicator can be obtained from these Methodology
metric questions:

- Primary memory, amount allocated: AT. 1(2)a.

- Primary memory, amount used: AT.1(2)b.

- Auxiliary storage space, amount allocated: AT. 1(3)a.

- Auxiliary storage space, amount used: AT. 1(3)b.

- CPU processing time, amount allocated: AT.2(3)a.

- CPU processing time, amount used: AT.2(3)b.

- I/O channel time, amount allocated: AT.3(1)a.

- I/O channel time, amount used: AT.3(1)b.

- Communication channel time, amount allocated: AT.3(2)a.

- Communication channel time, amount used: AT.3(2)b.

If the Computer Resource Utilization Indicator data can be obtained from the Methodology metric
question data, why is this Indicator not included with the Software Product Indicators and inte-
grated with the Methodology? Because this Indicator is a critical measure of the developing
system's viability and needs to be sampled more often than at the end of each development phase.

5.2. Software Development Manpower

The Software Development Manpower Indicator shows actual and planned staffing for the project.
This is project status information that is not collected by the Methodology metric questions (but
might be collected separately by QUES to calculate the Software Process Indicators).

5.3. Requirements Definition and Stability

The Requirements Definition and Stability Indicator consists of six data items:

a. Total number of software requirements.

Although some of the Methodology metric questions ask the number of functions, none ask the
number of requirements. The number of requirements must be counted separately from the
requirements document.

b. Number of software requirements that are not traceable (up and down through documenta-
tion).

Although there are Methodology metric questions under a Traceability (TC) criterion, these
questions merely ask "Is there a traceability table?" rather than "How many software requirements
are not traceable?" The latter question must be answered by correlating the information in all the
traceability tables with the original list of requirements.

c. Number of software requirements that are not testable.

None of the Methodology metric questions asks about testability of requirements. This must be
determined separately.

d. Total size of the software, in units.

During Phases 0, 1, and 2, none of the Methodology metric questions asks about the number of
units, although the number is easily counted. During phases 3 and 4, many of the Methodology
metric. questions calculate the ratio of some quantity to the total number of units. Either way the
number of units is readily available.

IV-23

e. Software units affected by ECPs.

Although Methodology metric question CP. I (11) asks about the total number of software problem
reports to date and the number of closed (resolved) software problem reports to date, no question
asks about the number of units that have been affected by software problem reports (that is,
Engineering Change Proposals or ECPs). This must be determined separately.

f. Open action items.

In the months when Methodology data is collected, the number of open software problem reports
(that is, action items) is given by the difference between metric question CP. 1(11)a (cumulative
number of software problem reports recorded) and CP. 1(11)b (cumulative number of software
problem reports corrected). In the other months, the number of open software problem reports
must be counted separately.

5.4. Software Progress-Development and Test

The Software Progress-Development and Test Indicator shows percentage of total units fully
designed, percentage of total units fully coded and unit tested, and percentage of total units fully
integrated. This is project status information that is not collected by the Methodology metric ques-
tions (but might be collected separately by QUES to calculate the Software Process Indicators).

5.5. Cost/Schedule Deviations

The Cost/Schedule Deviations Indicator shows cost variance, schedule variance, cost performance
index, schedule performance index, estimate at completion, and variance at completion. This is
project status information that is not collected by the Methodology metric questions (but might be
collected separately by QUES to calculate the Software Process Indicators).

5.6. Software Development Tools

The Software Development Tools Indicator shows, for each tool, the date on which it is required
and the date on which it was delivered. This is project status information that is not collected by
the Methodology metric questions (but might be collected separately by QUES to calculate the
Software Process Indicators).

5.7. Defect Density

The Defect Density Indicator consists of two metrics (if the system has more than one CSCI, the
metrics are calculated separately for each CSCI):

- Cumulative number of defects encountered divided by the total number of units.

- Cumulative number of defects corrected divided by the total number of units.

Defects are defined to be requirements errors, design errors, and coding errors found only during
inspections and walkthroughs (not during later testing).

Although Methodology metric question CP. 1 (11) on metric worksheets 0, 1, 2, 3A, and 4A asks
the cumulative number of software problem reports recorded and corrected, it does not distinguish
which of these software problem reports are defects by the above definition. The defects must be
counted separately.

5.8. Fault Density

The Fault Density Indicator consists of two metrics (if the system has more than one CSCI, the
metrics are calculated separately for each CSCI):

Cumulative number of faults encountered divided by the total number of units.

IV-24

Cumulative number of faults corrected divided by the total number of units.

Faults are defined to be software problems found only during testing (not during earlier inspections
or walkthroughs).

Although Methodology metric question CP.I (11) on metric worksheets 0, 1, 2, 3A, and 4A asks
the cumulative number of software problem reports recorded and corrected, it does not distinguish
which of these software problem reports are faults by the above definition. The faults must be
counted separately.

5.9. Test Coverage

The Test Coverage Indicator shows the degree to which testing has been completed, using this
formula:

Test Coverage = Number of Implemented Capabilities Tested Software Structure Tested x 100%
Total Required Capabilities Total Software Structure

This is project status information that is not collected by the Methodology metric questions (but
might be collected separately by QUES to calculate the Software Process Indicators).

5.10. Test Sufficiency

The Test Sufficiency Indicator is an estimate of the number of faults remaining in the software,
based on the total number of faults predicted in the software (derived from a software reliability
model), the number of faults found before testing began, the number of faults found during test-
ing, and the fraction of units integrated. This is project status information that is not collected by
the Methodology metric questions (but might be collected separately by QUES to calculate the
Software Process Indicators).

6. SUMMARY OF ERRORS IN THE INDICATORS

We found two errors in the Design Structure Software Quality Indicator in AFSC Pamphlet 800-
14. The formula for the Data Base Size component, D4 , is defined incorrectly; see Section 4.2.4
above. The formula for the Data Base Compartmentalization component, D5 , is defined
incorrectly; see Section 4.2.5 above.

We found one inconsistency in the Documentation Software Quality Indicator in AFSC Pamphlet
800-14. The formula for this Indicator yields a number in the range 0 to 1, like all the other
Indicators. Yet paragraph 2-66 states that this Indicator ranges from 1 to 6. See Section 4.3
above.

We found four areas of deficiency in AFSC Pamphlet 800-14. There is no definition of what a
"set condition option" means in the Completeness Indicator component C8. There is no definition
of what a "set condition option with processing" means in the Completeness Indicator component
C9. There is no definition of what a "data base segment" means in the Design Structure Indicator
component D5 . Having been written prior to DOD-STD-2167A, the terminology used in the
Indicator pamphlets is sometimes inconsistent with DOD-STD-2167A.

Although we point these out, we have not been tasked to revise the Indicator pamphlets in the
current contract.

7. SUMMARY OF RECOMMENDED METHODOLOGY CHANGES

The tables on the next page list the Methodology metric questions that we recommend be changed
and be added. The "See" column gives the section number in this document where the details of
our recommendations may be found.

IV-25

CHANGES ADDITIONS

Worksheet QUSe Woksheet Question
0 CP.1(1) 4.1.1 0 DO.2(9) 4.3.2
0 CP.1 (5) 4.1.3 0 DO.2(10) 4.3.2
0 CP.1(7) 4.1.4 0 DO.2(11) 4.3.2
0 DO.2(1) 4.3.1
0 DO.2(2) 4.3.1 1 DO.2(9) 4.3.2
0 DO.2(3) 4.3.1 1 DO.2(10) 4.3.2
0 DO.2(4) 4.3.1 1 DO.2(11) 4.3.2
0 DO.2(5) 4.3.1
0 DO.2(6) 4.3.1 2 CP.I(12) 4.1.6

2 CP.I(13) 4.1.7
1 CP.1(1) 4.1.1 2 DO.2(9) 4.3.2
1 CP.1(5) 4.1.3 2 DO.2(10) 4.3.2
1 CP.1(7) 4.1.4 2 DO.2(11) 4.3.2
1 DO.2(1) 4.3.1 2 SI.1(2) 4.2.2
1 DO.2(2) 4.3.1 2 SI.1(3) 4.3.2
1 DO.2(3) 4.3.1 2 SI.1(5) 4.2.6
1 DO.2(4) 4.3.1 2 SI.7(1) 4.2.4
1 DO.2(5) 4.3.1 2 SI.7(2) 4.2.5
1 DO.2(6) 4.3.1

3A CP.1(12) 4.1.6
2 CP.1(1) 4.1.1 3A CP.1(13) 4.1.7
2 CP.1(9) 4.1.5 3A DO.2(9) 4.3.2
2 DO.2(1) 4.3.1 3A DO.2(10) 4.3.2
2 DO.2(2) 4.3.1 3A DO.2(11) 4.3.2
2 DO.2(3) 4.3.1 3A SI.7(1) 4.2.4
2 DO.2(4) 4.3.1 3A SI.7(2) 4.2.5
2 DO.2(5) 4.3.1
2 DO.2(7) 4.3.1 3B CP.1(12) 4.1.6

3B CP.1(13) 4.1.7
3A CP.1(9) 4.1.5
3A DO.2(1) 4.3.1 4A CP.1(12) 4.1.6
3A DO.2(2) 4.3.1 4A CP.1(13) 4.1.7
3A DO.2(3) 4.3.1 4A DO.2(7) 4.3.1
3A DO.2(4) 4.3.1 4A L)0.2(9) 4.3.2
3A DO.2(7) 4.3.1 4A DO.2(10) 4.3.2
3A SI.1(5) 4.2.6 4A DO.2(11) 4.3.2

4A DO.2(12) 4.3.3
3B CP.1(9) 4.1.5 4A DO.2(13) 4.3.3
3B SI.1(5) 4.2.6 4A DO.2(14) 4.3.3

4A DO.2(15) 4.3.3
4A CP.1(9) 4.1.5 4A DO.2(16) 4.3.3
4A DO.2(1) 4.3.1 4A DO.2(17) 4.3.3
4A 1)O.2(4) 4.3.1 4A S1.7(1) 4.2.4
4A SI.1(5) 4.2.6 4A S1.7(2) 4.2.5

4B CP.1(9) 4.1.5 4B CP.I(12) 4.1.6
4B S1.1(5) 4.2.6 4B CP.1(13) 4.1.7

IV-26

8. REFERENCES

[1] AFSC Pamphlet 800-43, Software Management Indicators, Jan. 1986

[2] AFSC Pamphelt 800-14, Software Quality Indicators, Jan., 1987
[31 T.P. Bowen, G. B. Wigle, and J. T. Tsai "Specification of Software Quality Attributes,"

RADC-TR-85-37, Rome Air Development Center, Feb., 1985
[4] DOD-STD-2167A. Military Standard Defense System Software Development, Feb.,1988

IV-27

SECTION V

STUDY of METRIC QUESTION TRACEABILITY

1. INTRODUCTION

The Rome Air Development Center has sponsored ongoing research into a software quality
specification and measurement methodology, hereafter referred to as the "Methodology" The
Methodology is documented in a three volume set of guidebooks:

- Specification of Software Quality Attributes, RADC-TR-85-37, Vols. I-HI. [1]
This paper reports on our study of the traceability of the Methodology's metric questions across the
sequential phases of the software development lifecycle.

2. TRACEABILITY CONCERNS

Appendix A of Volume III contains a cross reference listing showing all the metric worksheets on
which each metric question appears. For example, metric question CP. 1(2), part of the
Completeness criterion, is asked during the System/Software Requirements Analysis phase on
Metric Worksheet 0; during the Software Requirements Analysis phase on Metric Worksheet 1;
during the Preliminary Design phase on Metric Worksheet 2; during the Detailed Design phase on
Metric Worksheets 3A and 3B; and during the Coding and Unit Testing phase on Metric
Worksheets 4A and 4B. This question is not asked during the CSC Integration and Testing, the
CSCI-Level Testing, or the System Integration and Testing phases.

It can be seen that metric question CP. 1 (2) is asked repeatedly during each sequential development
phase. Thus, the quality concern this question addresses is tracked from phase to phase to ensure
that it is addressed throughout the development process. We say that traceability is provided for
this quality concern across the development process.

Studying Appendix A, one quickly discovers that there seem to be traceability gaps in certain
metric questions. For example, the AM.l(l) metric question is asked during the System/Software
Requirements Analysis phase on Metric Worksheet 0 and during the Software Requirements
Analysis phase on Metric Worksheet 1. Subsequently, that question appears on no other
worksheet and is not asked during the Preliminary Design, Detailed Design, Coding and Unit
Testing, and CSC Integration and Testing phases. After this gap, the question reappears during
the CSCI-Level Testing phase on Metric Worksheet I and the System Integration and Testing
phase on Metric Worksheet 0. Many other examples are apparent in Appendix A.
As part of this contract we were tasked with answering the following questions:

- Is it true that because of these traceability gaps, important software quality concerns will
not be addressed during certain development phases?

- Should new metric questions be written to fill the gaps?

- If so, what are the metric questions that should be added?

We studied each metric question gap and concluded that in all cases there are valid reasons for the
gap's existence. Traceability of software quality concerns is not lost due to these gaps. No new
metric questions need to be added. Section 3 gives the rationale for these conclusions.

V-I

3. RATIONALE FOR METRIC QUESTION GAPS

3.1. Software Quality Addressed By Technical Reviews

Some metric questions are asked on Metric Worksheets 0, 1, and 2 during the System/Software
Requirements Analysis, Software Requirements Analysis, and Preliminary Design phases. Then
comes a gap during the Detailed Design and Coding and Unit Testing phases. The metric question
picks up again on Metric Worksheet 2 during the CSC Integration and Testing and later testing
phases.

One example is metric question AC.1(7) on Metric Worksheet 2: "Do the numerical techniques
used in implementing applicable functions (e.g., mission-critical functions) provide enough
precision to support accuracy objectives?"

The metric questions that fall in this category are AC.1(7), AM.l(1), AM.1(2), AM.1(4),
AM.4(1), AM.5(l), AM.6(1), AM.6(2), AM.6(3), AM.6(4), AM.7(1), AM.7(2), AM.7(3),
AT.4(1), AU.2(2),

These questions are asked as part of the Methodology up to the Preliminary Design phase in order
to ensure that various quality concerns are addressed during the early stages of development. As a
result, requirements are written into the requirements documents and modules are placed in the
software design to address the quality concerns and achieve a high level of software quality. The
Methodology metric questions make sure that these elements have been written into the
requirements and design documents. After that point, however, the normal product technical
review process (including internal contractor inspections and reviews as well as the Software
Specification Review, Preliminary Design Review, and Critical Design Review) will ensure that
everything in the software requirements and design documents gets properly implemented,
including the modules that were affected by the quality concerns. There is no need for the
Methodology to duplicate what the normal product technical review process will anyway ensure.
When the project reaches the testing stages, the metric question reappears to ensure that the product
will be tested for compliance with the quality requirements. Hence, a gap appears between the
Preliminary Design and the CSC Integration and Testing phases for the metric question.

Consider metric question AC.1(7) in particular. Asking this question during the Preliminary
Design phase ensures that all modules in the software are designed in such a way as to provide the
required numerical accuracy. The normal product technical review process will ensure that each
module's detailed design and code are correct with respect to the design specification-that each
module's detailed design and code provides the required numerical accuracy. There is no need to
ask the Methodology metric question at this point to obtain the necessary software quality.

3.2. Software Quality Addressed By Implementation Standards

Some metric questions are asked on Metric Worksheets 0 and 1 during the System/Software
Requirements Analysis and Software Requirements Analysis phases. Then comes a gap during the
Preliminary Design phase. The metric question picks up again on Metric Worksheets 3A, 3B, 4A,
and 4B during the Detailed Design and Coding and Unit Testing phases.

One example is metric question AM. 1(3) on Metric Worksheet 1: "Is there a standard for handling
recognized errors such that all error conditions are passed to the calling function or software
element?" On Metric Worksheet 3B, this question is stated as "When an error condition is
detected, is resolution of the error determined by the calling unit?" Metric Worksheet 3A asks for
the proportion of units for which this is true.

The metric questions that fall in this category are AM.1(3), AM.3(2), AM.3(3), AM.3(4),
AP.2(2), AP.2(4), AP.3(l), AP.4(l),

V-2

These questions are asked during the Software Requirements Analysis phase to ensure that various
implementation standards are set up early in the software development lifecycle. These standards
are implementation-related, not design-related, and so the metric question is irrelevant during the
Preliminary Design phase. When the project gets to the implementation phases of Detailed Design
and Coding and Unit Testing, the metric questions are asked to ensure that the product complies
with the implementation standards previously established. Hence, a gap appears between the
Software Requirements Analysis and the Detailed Design phases for the metric question.

3.3. Hardware Issues

Some metric questions ask about hardware characteristics that are required for obtaining a high-
quality system. Such questions are applicable only in the development phases where hardware and
software are both being considered, that is, the System/Software Requirements Analysis, Software
Requirements Analysis, CSCI-Level Testing, and System Integration and Testing phases. Hence,
a gap appears between the Software Requirements Analysis and the CSCI-Level Testing phases for
the metric question.

One example is metric question AU.2(l) on Metric Worksheet 1: "Does each operational
CPU/system have a separate power source?"

The metric questions that fall in this category are AU.2(l),

3.4. Miscellaneous Metric Question Gaps

Metric questions AP.5(2) and AP.5(3) are asked during the Preliminary Design phase on Metric
Worksheet 2, and are not asked again until the CSC Integration and Testing phase on Metric
Worksheet 2. Metric question AP.5(2) asks for the proportion of algorithms that have been
verified with respect to their requirements. Metric question AP.5(3) asks for the proportion of
algorithms that have test data available which reflects results of algorithm verification. Since
verification of algorithms is a design concern, not an implementation concern, there is no need to
ask these metric questions during the Detailed Design and Coding and Unit Testing stages.

4. REFERENCES

[1] T.P. Bowen, G. B. Wigle, and J. T. Tsai "Specification of Software Quality Attributes,"
RADC-TR-85-37, Rome Air Development Center, Feb., 1985

V-3

SECTION VI

STUDY of the RELATIONSHIP BETWEEN
METRIC DATA COLLECTION and 2167A

1. INTRODUCTION

The Rome Air Development Center has sponsored ongoing research into a software quality
specification and measurement methodology, hereafter referred to as the "Methodology" The
Methodology is documented in a three volume set of guidebooks:

- Specification of Software Quality Attributes, RADC-TR-85-37, Vols. I-I1. [1]

Volume III presents a software quality evaluation methodology for determining the achieved levels
of the software quality factors in intermediate and final software products. The evaluation
methodology is based primarily on metric data collected during each phase of the software
development process. The data source is a series of metric questions which are contained on a set
of seven metric worksheets. Typically, the terminology used in the worksheets is consistent with
DOD-STD-2167 [2], which was the standard in force at the time the guidebooks were written.

The seven worksheets are used to evaluate development products at different development phases
and at different levels of detail.

• Worksheet 0, System level, system/software requirements analysis
• Worksheet 1, CSCI level, software requirements analysis
• Worksheet 2, CSCI level, preliminary design
" Worksheet 3A, CSCI level, detailed design
" Worksheet 3B, Unit level, detailed design
• Worksheet 4A, CSCI level, code and unit testing
• Worksheet 4B, Unit level, code and unit testing

Two sets of worksheets, 3A/3B and 4A/4B, span both the CSCI and Unit levels. The information
required to answer many of the questions on the 3A or 4A CSCI level worksheets is collected on
corresponding questions located on the 3B or 4B Unit level worksheets. Most metric questions are
applicable to more than one development phase and so are found on more than one worksheet.
The complete set of worksheets and the metric questions are found in Appendix A of Volume Ill.

The objective of this study was to develop a cross reference listing between each of the metric
questions and the DOD-STD-2167A Data Item Descriptions (DIDs) [3] document and paragraph
location where the information to answer the metric question was most likely to be found. We use
the phrase most likely to be found literally. The content requirements and the specific language of
the DOD-STD-2167A DIDs are written in such a way (at least in our view) so as to provide
contractors with a reasonable latitude in complying with the standard. Unfortunately, this apparent
degree of freedom made our task more difficult and introduced an undesirable but unavoidable
element of judgement into the development of our cross reference guide. The next section presents
the general rules which we developed in order to guide our work.

2. ANALYSIS GUIDELINES

1. For the metric questions contained in any specific worksheet, the only DID paragraphs which
may be used as data sources for the metric questions as those paragraphs which are found in
the documents directly related to the development phase covered by the specific worksheet.

VI-1

Section 5 of DOD-STD-2167A, entitled Detailed Requirements, is organized into several
sections, each section (X) corresponding to one of the DOD-STD-2167A software
development phases. Section 5.X.4, Software Product Evaluations, lists the documents
considered to be directly related to each development phase.

2. The Software Development Plan document may apply to all worksheets; however, its scope
is limited to questions of standards or life cycle requirements which are not, in themselves,
phase-unique.

3. Whenever possible, a single DID paragraph will be referenced as the data source to be used
for answering metric questions. In cases where no single DID section contains adequate
information, multiple paragraphs/documents may be referenced.

3. FINDINGS and RECOMMENDATIONS

3.1 Findings

In general, we found the process of identifying DOD-STD-2167A DID data sources for metric
questions to be both difficult and frustrating. Clearly, a contributing factor was the quality of
many of the questions. We did not attempt to formally categorize problems related to the wording
and meaning of the questions themselves; others have already done so [4]. Also, we found many
instances where worksheets contained inappropriate questions. For example, worksheet 0
questions which require information found in the DOD-STD-2167A System Design Document. (A
few of these instances can be traced to the restructuring of the DIDs which accompanied the
issuance of DOD-STD-2167A; recall that the methodology guidebooks were prepared at a time
when the prior DOD-STD-2167 was in force). We have catalogued these and the other types of
problems encountered; see the remarks labeled comments in section 4.1 below.

The other major factor which contributed to the task's difficulty was the structure of the DOD-
STD-2167A DIDs and lack of supplemental interpretative and guidance material. As for the later,
we have reviewed a nearly completed draft of an implementation guide for DOD-STD-2167A [51.
Unfortunately, this handbook provided almost no interpretation of DID requirements.

We also detected several basic incompatibilities between the Worksheets and DOD-STD-2167A.
First, Worksheet 0 contains many questions related to system-wide technical requirements. For
example, question EC.I(1): Have performance requirements and limitations for system
communication efficiency been specified for each system function? While we can imagine this
type of information being recorded in the DOD-STD-2167A System/Segment Specification, in
either subparagraph 10.1.5.2.1.1.1.1 or 10.1.5.2.3.1 (see page 6 of the SSS DID), we are not
entirely comfortable in the use of these paragraphs for the purpose of recording system-wide
technical requirements. We did consider the use of SSS paragraph 10.1.5.2.5.4, Additional
Quality Factors, as an alternative to the two subparagraphs mentioned above. However, with the
issuance of DOD-STD-2168 [61, and the subsequent movement of software quality concerns out of
DOD-STD-2167A and into DOD-STD-2168, we did not believe that the Additional Quality Factors
paragraph would receive attention (but see recommendation 4 in section 3,2 below).

Second, many metric questions are concerned with user capabilities, especially in the area of user
control over some system resource. The key DID documents, the SSS, SSDD, SRS, SDD (see
section 4.1 below for the meanings of these acronyms), do not contain explicit requirements for
reporting user control capabilities.

Third, while many metric element questions were related to detailed and significant technical
matters, we often discovered that the (most) appropriate DID did not explicitly require that these

VI-2

technical matters be recorded. For example, the SRS has no explicit requirement for reporting the

processing and/or memory requirements related to separate capabilities.

3.2 Recommendations

1. Develop a metric questions guidebook. The objective of this guidebook is to facilitate the
answering of the metrics questions. The guidebook should contain, for each metric question,
discussions of the question's intent and narrow definitions of terms, what data is required,
the DID or other reference(s) locations of the required data, and a procedure for using the
data to answer the question. Short examples should be included for additional clarification.

2. Develop a DOD-STD-2167 guidebook for users of the Methodology. The objective of this
guidebook is to facilitate understanding of DOD-STD-2167A from the perspective of an
individual responsible for determining answers to metric questions. This guidebook should
be written as a companion to the metrics questions guidebook.

3. Require future development of metric questions to follow a standard process. The objective
of this standard process would be an orderly and evolutionary development of the metric
questions set. As part of the process, each question should be reviewed for consistency with
the most recent version of the Military Standard Defense System Software Development
standard. This xeview should include both terminology consistency and a finding that the
data required to answer the question is readily available.

4. Submit modification remuests for DOD-STD-2167A. Since a major objective of DOD-STD-
2167A is to increase the quality of delivered software, reviews of DOD-STD-2167A by
individuals working to evolve the Methodology should result in suggestions to improve this
standard. For example, we recommend that S5S paragraph 10.1.5.2.5.4, Additional Quality
Factors, be renamed to Additional System-Wide Requirements. We believe that the
suggested paragraph title more accurately reflects the intent of the SSS document.

4. INTRODUCTION to the CROSS REFERENCE GUIDE

4.1 Organization of the Cross Reference Guide

The material is presented in worksheet order. Each successive worksheet begins a new page. If
one DID reference is sufficient to answer the metric question, then the entire entry is shown on one
line. If two DID references are required, the second reference is shown immediately below the
first. Strongly related questions are shown grouped together (no blank lines between questions).

4.2 Explanation of Column Headings

M Element. Each metric is defined by one or more metric elements (questions). The questions
are shown in worksheet order. The question identifiers (acronyms) are used consistently
throughout Guidebook Volume III. The two alphabetic characters identify a software criterion.
(The software quality factors are defined in terms of these software criterion). The following
integer identifies a metric attribute of the criterion. The following parentheses specify the metric
elements which define the metric criteria.

VI-3

DM. DOD-STD-2167A Data Item Description Acronyms (alphabetical order)

CRISD Computer Resources Integrated Support Document
CSOM Computer System Operator's Manual
FSM Firmware Support Manual
IDD Interface Design Document
IRS Interface Requirements Specification
SDD Software Design Document
SDP Software Development Plan
SPM Software Programmer's Manual
SPS Software Product Specification
SRS Software Requirements Specification
SSDD System/Segment Design Document
SSS System/Segment Specification
STD Software Test Description
STP Software Test Plan
STR Software Test Report
SUM Software User's Manual
VDD Version Description Document

DID Paragraph. Each DID is organized into a set of numbered paragraphs. Each paragraph sets
forth information reporting requirements. The paragraph number shown in the cross-reference
listings for a given DID identifies the reporting requirements which most likely contain the data or
information required to answer the corresponding metric element (question).

Document Reference. Each DID paragraph specifies the paragraph numbering which the reporting
contractor shall use in order to identify the location of required information.
Comments. This column briefly states problem items mainly related to the wording of metric
questions, the correspondence between software development phase and the level of specific
worksheet questions, and certain other problematic items. Following is an explanation of the most
frequent comment types.

Inappropriate level (DID). Indicates that the metric question should not be asked on this
worksheet, since the information required to answer the question is found in a DID not
available at the development phase represented by the worksheet (see item 1 in section 2 above)
Shows, in parentheses, the DID which most likely contains the information required to answer
the question.

• Vague; term (X). Indicates that the question is vague due to the presence of term, or word X.

* Subjective. Indicates that the question is vulnerable to interpretation or judgmental influence.

* Indeterminate. Indicates that additional information from sources other than the DIDs is
required to answer the question.

* Weak. Indicates that the assignment of the DID reference to the question was the best choice

available, but that the assignment was made with low confidence

* ? Indicates a confusing, ambiguous or unresolvable question.

* No: References 3B or References 4B are not indicators of problematic questions. These
indicate that the data sources for the CSCI level 3A or 4A questions are the corresponding Unit
level 3B or 4B questions.

VI-4

5. REFERENCES

[1] T.P. Bowen, G. B. Wigle, and J. T. Tsai "Specification of Software Quality Attributes,"
RADC-TR-85-37, Rome Air Development Center, Feb., 1985

[121 DOD-STD-2167 Military Standard Defense System Software Development, June, 1985

[31 DOD-STD-2167A, Military Standard Defense System Software Development, Feb., 1988

[4] Patricia Pierce, Richard Hartley, and Suellen Worrells, "Software Quality
Measurement Demonstration Project II," Final Technical Report, RADC-TR-87-164,
Oct., 1987

[5] DOD-HDBK-287, Military Handbook Defense System Software Development (Working
Copy), October 30, 1987

[6) DOD-STD-2168, Defense Systems Software Quality Program, April, 1988.

VI-5

Cross Reference Guide

Between

DOD.STD-2167A

and

Metric Element Questions

Appendix A

o o C

0 -

Cl) CO) c l) a:Ci ol

>0 > > > x
00 40 4) 0

E to o 0;

m E co a 0

(D c. 0 0 0
cU o0 0 0 0

E 0
0 m~

E >

I6 cc N N ~ c N N~
0- 1>* >: > -

E- CD

0 Y a Cin U) U) Co U)U U)CV U) v UCv

V- V- T-

V- N- CY CV vU)

WS(O)'1

o 4 E
E
0 0D

0D 0 C

C" E E t
0(0

00

COE

0 6 6 6 ico C

Cl C~ ~ C C4 C4) C' C4 '- - v

N N C ~ N N N4 X N C4C)N C)

C C, Y m' C'4 v cm Ifl C'C) C)C cn)

N r, cm N'c~ C' C) IV U) cm'~ *
N N N N N N N N Y ~ ca: a:N ~) C)

W(U)-

c 8

0 0a
co 0) (

0 0

0D

E E0c

'0 0:>

(D E

cl CJ mvC4 N~ C x~ C C CJ0
C C) C) C4 CJ C..; N) N~ c6 6

coU V m 'CC C' CCJ Cd v CJ CJ CJ C4 C4 CJ C4 C4

CV w IV T- CM - -

WS(o).3

CL

T 8
C

Cu 0.

CDC

o Eo

CuCD
CX

0

- =0.

0 0~ w

0u '- o ~~c

0)C 0 0 0

CD 0- C~ m w

0 E 0. r

CD

-0

0D E

clJ c'J m' C'J N

C4, C4~' ~ v w

00 C CV

-c 0 -Y CV IV ' -

V- V- cm~ - N NY C

WS(O)'4

>

Ci)

(A >

j) 2D%.
(D 0.

C0 -0 0

(0 L-i 0

a D 0 (z; * a

>0 -a 0.0 0

Cr C_ CD
0o C 0 C E 0D

.a .-. 0 E~ -.24)~
0 % _ P. 4)

000 (D) -1 >> C l0
%C %.. U. e

CL 'x EL E w o ID%0 o ac

OC E z co co 0

0 0

0 E - oxE ~ L. 00
-- Zf U) .EOn >) >V5 m ~

-0)

U.; CO) CV) (m C I

Ni N NNN NNC C

0 n c -c C co V- NCJ 0 V

CY Cn CYCY mO

00 0 00000

1 W S ,- .5

0.
CC

C0 (D

0

0C

%. > a0 02

00 V

h.. -E 0

-D *i CDI 0

00E E

00 CY CD E
(0 0) (D 0 D

00 (D(

0..0 Z5 EE

co 00 c t (Dcu
.- > - D L E 0u

EE w E s
00 0 E 0

C/ 0 cnc) C.-

0 CO 0.CD

E~ a) CD4)75m

0~1
E0(0~ C

N C'

N6 cn! ci CE LO

WO).6

CD

EE

00
I~0O E

0 00 0
E

C0~00

E 0

E E >E

0 0

CDC
Cx E

E, CO
.9 0_ 0' w > >

0 _ 0
0 0 CDE 0D - 2 0

E E 0 0
4)C 0 6 1

0 0-

EM - CL 00
0t 0 0 0-

o -

(D >- LL

DC .2 x

C# CV Q 0 5 .2 .xC

in~ ~ (:8 (D a'(~ ~ . %

0.

N U) V- C~ V- - N N N
0 0 00<~~0 0 .U...0CCOI

0 00 6 6 wi w www

W.So0 .OT- T-V

CL CL

%- 0

SEu

U)%. Cu - D
CDC

u a: .a - E
U. ~ C)c C/) "a Co *L 0. C) C

- W. CDl)U Z. -5

4) (D Cu Cuj
'i> >~ > C

7E Eu E- -, Q'u CLu E
m - - '''2 M(

QCuC Cu C D~ ~ ;5 Cu CuL Cu m. 4)

OE Cu 100' VVV 'a m "0 Cu Cu Cu

=Cr

to a)
(I) N< N

0) >:

X C4 CJ C% C 0

%o C13 cm

Nu cOm Cm U)4 C cm) CV) C)

0~ w ww w w L .C

cIJ ,- - ,- e8

00)

00

am
000E

(D-

cc w

0

. C (0L (C5s0
.02

CD cc ccCDE

to < 000

0 0 C

0) 0

0 0

E~u 0 V O 0 0 -- 0- 4-

c C4 0.. 04 0. 00 7

0.0

CY IV 0.M I n -

0E 22 2200 0000 000 00

4-,)*

0
to-

E
0

CC

(Dj~

C~~ o .

0 * 0

70 - E328
00

EE CDt5

-0 0 (D0 (

0 cc

cm (D 0 E

C~ ~~CN JN N N N -

Eu CD

00 0000 c C CY 04 N -NN0

C* C.) C" . 6mm vv0

.2 - '- .

cc T7 .- CD V- T-

eiC4i ;V 10 (Di ID~(, '-C' i-N 10C C- -- - -- -- CD - .

N N C4JC 04~C CC

- ~ ~ V = *O *. * * 0 3 .'. -

0~ ~~~ ~~~~ 0. 0 .. 0000 W W 0
0 0 0 000 Zc. ~(c

ISo. 0D

cc

(A0

00
mm

t) - Cl)

b-

0A E'

0

E .

E E CDC/
0

U

CuL

OE C/) r_

W CD

0 -

(D E .v0 C CV) CV) CV)

c) I. Cc uUl) CV o V) c V) oi) CV) C)
U) U) .!L

cc)

(0

NNNVNWto C J) CV) Co') e C-i 6'

CL CD CO O(I)LlI CD

CL

- i CV)66 -6 = o 6 -; ci 6 . -

- N C') CV) ~ '-~ ' '- N0

U)) UU)UU)UU)) U Z-c) U U)U)) U U

WS()0 1o

C C

E E E

0 D 0

0 0 0

S S S

4) C (D

0 0 0

0)0 0 0

05 0w

(D 0 0 0

E w E
(D 0 (D(

(D0 0 0 0 0 E
OE

-07-

0
. : : C C

0)< c- C; C ;0

V- -r- V- V- V

O- -C!j c C) C' v (0 (0v0 (

w o 0 w - ('oy co co Cc

WS (0)- 12

>) CD
E 0D 0 CD CD

CD 0 0 0 0
C0) CLCL

0 CL CL CL C

E

v I CV) Nm C CY N - '- Y

a:, C v - C) ' C) vi C ~ cl C') C') C'

h..V cm N;

w wi U) W; (6 U; (0 In In In

cm CV) 4 1 - N CV) 4 ~ - ,

cm, y, CY3 C') C) m' I l (0

WS(1).1

oE

b-
0*

.20%-

Q 03 8

~3E

0E0 .E 03 0
03 V0.0 0 CD

Ma (a, 0 3 3 0

E ca

C>0 (D 0 0. 0
E3 ~ ~~ E %- 2

(D U) a. 0.
CD CD C CL

0 cc

>(x . x)(x
V) C CCJ C O C (0 (vi0(m cm

~~~~1 ~V V-~ C~ ~ - T- y. y i-

' - C)') v V '% J C V)U C ) C 1 C~. C V T - 0 4C

WS(1 ).2



E

0 0

Co

2 '.2

00

CLo 0

L. 0

0 a

0-- .c~c E 0

Ln '~ E Cc 7@ 0 )(A> > ~
0 C W

0i <~ 0 2 U.cc E E 0
E 4) 0

0- 0 - 0.0 0.
0 0 :3 a - 02 . u
0. o0c.. CL W0W 0C0 LA. -0

CCcA C/) CO) .E w

U.2

W . 0

0 cc W V C~N'J

WW0.U 1 -CJN % E- Y

0 _

"D __ = ~ - N Co~ ~~~~ i000 NCcLlOIr- 0 O - '

'- 0 - - y y Yj
- . o~~~~A, i - '-

0--W

M WS(1).0



00

0-0 ,0

00)

C S

CuL
E 0

ui 00

_0 CDw )

ci CD C

0 >0

Cr E 0 r- %

r- CL CLOCu

~~~ E E -- )0C

0) CM 0 0) 000

E 0 - C0.E;~

aa in a: a ,>

-~~~%. E 0 -u Cu 0Cu/) . - 0 ~ C4

MA 0 M~ ' _1 ,-
cIA 0) ry 0.. V7 .- 0. . . C) .>u 00 0 CC 0 00 > ~ Wo Cu >

0C (1 2D 0.(4))

am C

(D c L)~

0. a a %. %. - D C

C CL cx a .C L
0 (0 0) 0 00 000

E C C'C L CL C0 PCL E- (D wC 4) Z0 E a CO
(D 0 e CL Nl 0. CL CL w ~ m - -'

0E ch.~ a. m.
00000000 0000c0 c0

zWw(>)C4

0

.0 c

0

C00

2

0~ (D 0

00 (A

x E E
ccc.- *oci)
(a 00 G

0m V

0 U 0 : C>. aaD E E
> 00 (DC0%

W 0 (E

ch.

EE.E

z C)~C~C CJCJC% CJ 5
9~ c -,0

(D NC DI CC~J C

E~~ IVii C)C) f IP O
0 0000 Zc DOODO C C V) (

cc .414414 44WVi(1).(

CD

C _C6

0~~ M.b

0 ADU

0 -
0* 0 0 B

- U
W _ do

E 00

0

0) C
E :3 E 0

0 Cu
09 00 0)V >

> >d EE- 0 cc~

E W C a)~

cn m W)U)
c00

M 0C0 0
EO a3.80

4) U U) - t
CL

0 cc

g NC% OA X

> CV)

CuCui Ci

a., cY~cv W_ : 1 o
Cu~~C (n t7 CJjC

c'JV T- 7 - 9- **3 CD 7 - -

c 00

0CIZ

00

C4

V- V-- 7v 7 10C

cc 00 0 66 a. CL CL CL

WS(1).6

CD

CoCl) (U)
C/,Cl) Cl

--' > >0
> cc CD0 0-

E3 < 0 02 -

Z3 40 0 .0 .. . IVE Y
0 %-Zt -% . C6C C6'

00 0c mE 0 0' t D
> 0E SE.S ccC () Cl)

cc**~.0 0 0 ~ L I
(,D.cO 0 0 ~

o~~0 ~

E5 50 5 5 S>c

ci i

CV) cmi c Y nV) C C) IVCV CV)

w0 w 0 0 0 0 0 00 00 c 0
w ~ ~ ~ ~ ~ ~ ~ ~ 1 w ww w w w L LLL L L

t:

CL

0~ E
C CD

00

c0 CO(0D

05 CD (D 0 CD

x 2 00 m 0c m
U)~% cm U

co 2a,

a, W~ -L a, . ,a
(D CDC E CL E

g CO C. au C/0

o cc

C Cu C Cu Cu Cu C

a,0 - C Cfl .. C/)C
UV)

N CN NM CV)N

CCCi m C4 C C'

coU-a 0 0 000 0 0 0 0 0.
0L LL T W.1 2

- -S= --

0 00.2. .0

Of mcc cc
0. cl r. ..

Q Q

U 0(UCU(U L

>0 co
D D0 CO 0in

Cl) CLC

(D (D~.cc~) .

CD 0 0 o

0 a- 000---0

E00 0 i

0.) 0 L (D 000D E CL.M0.

ccto M C

U)

x xxx
C,) ~ ~ ~ ~ c CCC, C' ' C'C')' ,

(U4
01i mm m .m mo m0

C4-Y 77
.q OD N VCY

o

0 W D O - V-V- q - V- T- NMn 4

NC 4 U)C4' " y- C4 4 C4 C4 i

21 00 00000 00000 0000 0 000

WS(1).9

0
E

(D CD

Cu

0

(A c

CA 0

E 0 V

* -. C0-. C/)
0. 0 Cu 00)

r-Cu -E t-0 0
0 cc C.

E-C CD Co (D
0L C

0 0 a Cu m

~uw
0~~ ccc

ll Cu
CDiQ

Cu0 _ D

co It IV' CV
1*'Y V-- r- w v CV , (

CC~ 6 C C4 Nf CO 1:'

00 ~ ~ c 0 Z. C ~ C l) Co Co

WS()a:

0

Icc

>0

>'U 00

Mi con/,/

-~ > > >, >

0- Go
.jE (D =000

E .-cc r

0 2
0D w . 022.0

L 0. 0.
5D Eo CM f -m C

09 0
00

00 m

C');

000 00 0 00 Go Go C v I le

,50 -. - - - - -~ -

CO flC*CCJ CC CfO C4) CO*4C~f c cmc m cccm

0066~~S(). 16> :> :> :> :>

C/) C/) U)

(D 0
>) 0

-1 < 0)() DCDa

m 000 0
E. 00 0

CCU

o...

* CS0 0 0 .

ci c C c i:

0 0r

21 wo w 0 0 -- - -

Cu .. ' 'l) 7-7

(D (- CD

.~a.

Ci)/)~ *c D- (n - -

000Mo. 0 _)

CD C
CL CuL a

CL 47 220 0

.9 0. CuuL~ Cu 0 0

-- c'

.1

0 CL

Cuj Ncm N m CJ'N N C CJ~ N C 1 C

a. .:': . : .: ': . : . .. ": - :I

0000000 00 00

v 04 MY.- N- N- m- m- C1- 1CY-V*

07 _q _l w _0 t. V O n)W

i C CuD a: .a: .du. du

WS(2).1

E

0)
E

m 0

E E E

-o &- - 0

> ~ 0- Q
.0 0 > 0

4) CD
.0 .2 . - 0 0

>f (D) Li 0 (D0 0U

.0 CL 0L C E_
00 0. 00.C

C 0 cc w. w
03-0

- C

C

0

~CJ yN)r- CrN T- Y x)< XX xC

CL

C4 .: .1- .C m C 4C jN C Y

-i 00 00 00 0 0 0 00 0 00 0 i u

oo 0000 6600 6666

M.0 ccl M 0.0 cc.0 wccw
C- - - . - - - - - ~ V- T.
C') M NN 'EY N NCvV)uD ~ w -
4 - l -l - l ,- - - - - - -~-% - - - - -

WS(2).2

E
8

(0

0
(D CD _)

cc 00 00 cc 0

>0 (D0 (00 (lU
02 02 00 00%0

%0

0.C

00E

0 C

NNi V- N N

Ni 6(ci NN c'iC 6 (0 0

0 00 00 00 00 0

WS(2)§.3§§

00

~o 0

>U(- - Z
Ca0 CDE 0 4) 4

00 E~ 0- %

4)E 0
3:3: 3:3 -t -: (O i l

INnuu M
Z ~0.0

Cr Ln ~(LU) U) U)v C

WC 0 c ucdc

0 22 22 00 00 _i 00006 6 6

0V V In00I n 0- W
Co 0 C) C-4c - N

-4 C4 C

0u 0 - aa

WS2c

0

Z CL

0

a)

.r.

z.)

DCL
(1) 'D - X

>, ~ 00 " c 2(
00 m

--

*l) 0 U0 0

O 0 '0

%- 0 a 0 a0t

cc3 ai 0l Cf oV
(I(D

> 0* 0 02 0-L

0L CLa C£ C)

0 0 b co C/ l.

00

-c

NCu

(Do

a-.
0

CD

0)i viv.. "

Cu4 N N* N '-N

CV) Lf co- r-...I,

0 0 04 0 0M 0000

4 C M c ii C) (N U N c ") 6 6f

a 0 0 W W W W W WW LL LL U- UL

WS(2) 5

SCL CL)

>0 0

0 E 0 2C2
'A CL C

Nc m

cm m

00

2 C C 1 C 4C

C m m m C) Yi -Y --
N N NNcN

(D

0

NC4 0 i- N m w- cm mN vN- (

00 0 0o 00 00 00 0: 000 0 C a
W- LL 12 22 22 7- 7- 0- 000 0- 0-7

WS(2)06

_E E

00
0 "0

0 0

0 C 8

1 IM0

0D 0 0Da 4

> 0 0
(D 11 'onEm

-M E ea.(

z S

I E

0

O CJ c l C C %CINJ CN NCJ1 CJ NC4JC4 CJ

1: Ifl 1 1 : U)II : 1 1 1.:101 .- CD 1: :10U _0

0 000 00 000 0W00

V W) 40 N% CO - C 4C)I

04 C4 CC4 11 4l U7 (0 cl - c --.

0 0 0 00000 0 00 0000 0 mmm

WS(2)'7

C13
00

0.

(0

CY

) 0) 00 C u

0) D CD~ cc 0
0 (4 O0~ '0 E 0

CE C CC CL

(00

CLC

1y cy c- y N N NNC
'n 0 n 0 l 00 06 0 0 0000 0 00 00C

4)000 00
o 3b bb

n . - N I. w *O w o :3 'i 6 6
CL Cl) .Of .I .) .O .I .OOOOOC) U

WS(V.- 8

a~E

e, E

N cc

E

CL0,
E0

NWx x>x 7 -.
0 C C a qc

*(

.2 C 4 C
ow ww ww wa,

o6 66 6 -

wwwwwwwwoC 0 P

WS(,-

a

cc0

U, a, a, 000000 ao , a 00

0D (D 000000

a, a: CC mma:a:cc a cc cc 0. cc c

00

04 ccC N C4CM

CCNC C C JC J

a . '- 1.. 1: 1 1 :. : 1

CV) CM00((V)e nW N c00(

--- - - -.- l -i CY C%'C
CJ CJ CM l04 ci m NNm N N C4 04 M qT C

:g a: C a:CaJN -

WS(3A)1l

CD
4)

C

U)4
a)

CD

cts 4) Cn

0.4
(0 (n

0) (n4)

- 4) 4)

0 4) -.C -o

0Y)
gn 4)0

4)4) (0 4)CD C)

0) 0 Q) 0
0n ci) 4) Z)

04D)004)(
0 0

In

.a a

id->

00
CD N N N4

o l in na u 40(Ltt(Lt)((6O %

0. N.*
0~~C v' C '-C -v - - N - -

000 00 00 00 00 0

W0 00

-cc < 0 0

- - -- - - (3A- - - - -

E

Cc -) -8 0

_ ')(0 a)

iE m- CL

0 D0004 0 000 00 0 a)I()4)(D

-0

N C4CE
)(~ xX0 >

CU - Ni- v; t6 0

000 00 0.mw000o i6C 0 0
* Qu- 9- 0000. .

WS(_A)_

CCu

00

CL cx

0 0 C oc
ot 0Y CY Y V F

U) (o (A to(a(A0

!0 . 0 Z 2 0 > 00c~ a c~2 *= Cv c C6 a
(D a) 0) Q 0(Cl) CO

0 *x 0 0
E S? 01 aS 6 0 a0 Q0 0 D (D 00 z 0D 0)

(A cc c ccI n acc U) cc 31 cc a
CD

CO)

N

V- Lo U cvi

.

0- 0m 0 V 0V 0n 0 0 00) 00 0 o

_ cn .f
a: d. d. d d d%-- -- - -.

a a a WWwwww W W w w w w w wU WLL

WS(3A).4

V)f CV CV) CV) m m mm C V) CV

0 0 00000) 0C)

-3C E
C3) 0) or 0 (D (D (D

00

o E
>- >- >: >:

x x x>) x) X)< x NC

NN 44 .4 44

04 C1 N* 04 N N
co

(0((0((0((0((0

cc * -- -~ - - -

cuf wfl cc ~ 0. 0000000

00 oa 00- 00 20 0022

WS(3A).5

0 o (I o
-n 0V V V) 0 a-) 0

7500

cc c
m 0 0 0) ~00 (U 0

Oo ccc : c cr.~ m

00

(D N i- CY

0 ~ 1 UU 'l) U)

C. CY c N cmi

0D . Q . C

cm cv) CV) L) Nm m ~ i- n (0 V wN I W)
.2 -cm cm C14 -m ;: -- -

21 2 2200 00 Fn 65 u(c cn cn U)

WS(3A).6

C3

CU

CD

0 0)0(D4

CfW 4l) 0 4) 4 CD(D D) (D M !D

0 a4 400C 42) 00 00 0

E
0 (D4)0 4 Z 0 O0C DG

0

CM C N C
E

0c 4

h.mC
-- - - - -

- -w W0 V-((0 mC YCY C) V

0. v- r-.: - - : : :-
ww ww ww

U) C/)1

0 0 00 00 0

.E cl)

0

CO) ~~~(I m V C oV

0) DCD80U) CuD

Qc 0 0 0 00 Q 0Lr. 00
(D0 (D D0 D(0)

-j 00000 r- r-

00
.cOj

E

CL N

a N C C) N

U. 1. V_. C

V.- y- - Y

0.

v v % -w - w - 9- -- T- --C c

WS(3A).8

.J E
E

(D0

-CCu

0)V

06cl

>

WS3Au

-JE (n C/
E

m 0

00

N NM 04 N N- 04 m N4 N N N C1 N

V e l n I le v~U IV n ~U(6 4 4 'i

CD

(04 0 60 (0 46 (6 (6 (6 ~0 (0 (0 (0

V - V- r -I T - T- q-V - T- 7-

N~~~ ~ ~ C- C V04 N

WS(3B3).l

CD
Q

E

CL

0
rAU
8C

cm C cm m CM C-4 m ,
>: > >: : > >: l c Ci : >

c *gb C C m

01

N C

0 * * o * * 0

0 Y ~ v y N NN N

V) c 4)c CD) D CDW (1) COC

8,8. '8, 12t8 88
>0

D 3 ~ zz zz zz zz II z

00
CD C

E

C' N: C

Ce, N c
44 N

t6 t. c

000 CD 000 ' ' D '

C00 0 00 C 0 00 00 w0 00 It L o r

4 Y -Y V- I- I-- N -% C- cm CY -

w 0w 0WWWWW wW WW WW W

WS(3B).3

(D
0

E

0

0

.a2

0o o

0I E
EE

CY 04 C 04 m NC4 C Y N C
C .gC C v C C C C

~ N N N N '

w w N 0 0 0 0J

0 L 0 0 0 0 00 0 0 0 0 0 0 0

- - V..-

CflflC/) C/) Ufl U)

U) cI, co,

v00 C 010 "00"

88 88 8
00 0

T? .9 72'9 T
4) (D 4) 4 4

00 4)J 0) (00(

U,- . ~ .0M D

E~~ 0 0

M z z z z z z z z z
co

'T q~ .4 v v .4

I Nm N cm NN N N 0A N C m

W. V- V- T- T- - V

0 0 0 -0 00 00 00 0 0D 0 00(D .

0L i2 n -- -- - -
CY m IV O L -r- V- I~- CM C ,- ' -

WS(3B).5

U) U) U)

* 0 0

0

0 0D 0

0 0

00

0. a. 0..
E 'E 0D 0 0)

D 01 z z z z z z

040 4 C l N q c m c Y N 0

0m N c mc m N m N C m c *

E N N N N N Nm N CN 04

U! .4.44!47 4

N N N N N N N N N N

IL

CD,

a. 0. CL

C/ C) C/)

0) 0 D 4

~ 3z z z z

CD0

00

0 cm Cm cm CM4 c Cm >- C4 >-
E

>: >: >:>: >:>

Nl CY C N N~ Nm CY Nt

0(6 ((0, (0 (0 (6(6 (660

00 0 0 0v0 0

0 cCM M N
ci~u V~ V) 0U))Ln

WO C/ : C: C.: C: C: C6 CO CO 6

WS(3B)-7

CL

coc o ac
q

wv

U0V At
CD0)(

E 4)

E 00 S? 00
_ 0 0 00004)4)4

C0 c C cccc

0

C'JX > N! C4 >(C4 C4 C J 4X

0i m v m . co-)4).

17 117

0q C%- CM V-- 04J Ci CMCM CJ 0

T- - T- T- T. T- -V- - V. T-

v~N N N C cm N m c V cm) y % C14

WS(4A)1l

0

EE
0000

ask Z5 03o co -om(n
S.S~ ~ ~ ~ S0 . 0=v1,I

(a~~~~ (A (a0 Q(D

(D .0 0) 0)0 0-a Q C)00 0 0 00

- 0 000) 0 ((D 4
-j E E E E E ?0 0r cc~ CD 0

00 00 00 0) 0 oo('3 00) CD 0 9)(

CO U0 o 00 c z <- cca:c z crc a

0

4 N4
E >: >

x C 4 N N5 1C

0r or~ C-) qC4 m .. ~ It m V l y-N I

co .. 6 (6 ..

co Cv 4CM' ~ C
%- -- -* cm%~

,a -j j ji -j CL . a.. M&oo..m icn
C) 0U 0 00 0 0 0 0 0

WS(4A).3

0C

0.

0 01

00 0

E
00

CDu 0)w>(D(D4

> 00000 ou 000 uotn 0 aCC c c00 0 r
10 E 0? 42 00 0 aC

0 00) 0 0 C (000 C 0) 0 0 0)) 4 0

C.N Ct

Nm N
m)~ C')vc ' c

N LO N- CV) C'D V-C)0 '-V L l V O

CD ~ ~ 00wo 0 0 00C 6

0000000 wwWw w ww w WW W

WS(4A).4

0

E

E

4)G

0D 0 00000

00 0.C0 (D oo)

0

N: N NY N

NE N4 NN N

ol YY Y CY C-

0 U) C d U) CC) WW WW W W *

W W WL 0 0 OU2 99
cm ' cn m 'WS4(4A) .. c y c - . vc

0
vvvvv v (D(A I
wwwwwww (

FA wwwww0

E L

0 0 0 000 4) C'Z 0) a)S 0 0

N C 1

h.. _

m(U r c N CMJ~ m~ CV) CM NV

7777 N N C4 ' Y

0 00 0000000 00M*C 00

2 2222 2 0 0 00-

~ N 1 -~O) N N ') C) C') U

CL

a 40

2? (fl(a) (C 4).

0 D00 -0 ('D(DC 0 00 0) Z D(w

04 CC > C4 C4CCCCC>

cc 00N m 0N00 C l0 0 0 0

W0

NMVN

Cu

WS(AN-

(A(h A U W~liU) W o (Q ($ F
000 01 CD 000(

03 (D G)C COD (1 CC 4)4)4))4 C D C CCd

a (D a) CC r

00

E

N N4

N N

C- 1: 1:

0- .YC V c -C' a C V C

NNNN CY CM 44 CV) c41V

WS(4A).8

E
CQ0

Co

CC

1~ ~ N4 c! N N NN Nq cm ;h

04 cmN ~
N N w

o2 m NN

* *CM*. N N N ,- N . s- -

#0 U) ~ U) (DV). I) U 2) U) * -)

(A)

CL

0

A

cm.
0 E

CM N m N N CM CMv- 1cm-

))<N >(N)(k k C N *>i N N> k >N

CY~N cm m M 0 v c

N N NNy C- C)~ C- C

0 cm cm CY ' ' N 4 Ny

M V- VV -'-

0~ 0,C,

WS(4B). 2

CO

E c

N NN C-

CO) CV) Nn >: : >

h.. NJ N N N N y- N N N ,- >- C Jw NyNw NN N C C

U.

N- - N- 7- N- V- - V- V- V- T- T- T-- y -V- 7- T- T- y-

VS VVV S V

N Y CV (0 N C C') m W (0 (, w ~ w iv
C4 cm cm 0 - - V- T- - 9- '" - 4 0! 4

SC6) C6 C6) (6) a:0 00 0.0 a: a: 0.: CL CL M(L C

WS(4B)- 3

cc.

NNN)(>(' N :)(Y)(: NN N

N4 N C C4 > N N y

N N4 N N~

Lo in WO) W n t *.t .

0 0 00 00 0i 00 00 00 0i 0 00 00

W ' 00 0 '0 (D '0 Q 0 e lo
r- r- cm -V In-C~ tq

N C4 * C4 C4q C4 V w 7
0o 0.0.0. U. Cl) W W W 000o2 W WUW W LA. 00 0 2 22 2

WS(4B). 4

C..-

0

CO,
cl.

U)
) 0

C.-
0

C-4 04
E

CL

r No C'h W) cc N N

N4 71 N C4C

Nw N'- N'- 5

.......

E

0

CD

E Nr N~ mc
N N4 > Nm N N NN N >C ~

4~~~U CU) CC) 4 C

NY N Nm C-
Nl, N N N C

0 0 000 0 '0 00 00 0 0 0
CO CY m e W

0) - - -mle
N4 N4 C) C') C) Ci C') C')
o 00 0 00 0 a0c
Cf) C/) Cl Cl) Cl UO/ l C)) CC) C/)

WS(4B). 6

E
E
0

D-
.0

CN)(> XC NN N~c C NN Nv- Nv- N, NN N

CV- N~ V v C)m C) C C i 6 C C C

CC

(D 000000 '0 00 I 0 0 -00 00 00 00 I 0

10 C-v CY NN CV) v i c0 w0(0 P.- co

WS(4B). 7

E
E
00

M

-0

0(N))) N NN NX)<

Y- Y- 1~ 1

Y ,- '- N C m c m 4c q

w cm NNj 04- N, CV NNcm N Nv. cmv N4 N N

-.o 00 I'- N4 cm CV V

WS(4B). 8

CD c
>0

CD E
E
0

SD

0D C- N V7 N' - C

cm CM CM

CMX CM XNJ NY C CY CM XX CM CIA) N (

0.

00 0 00 0 0 00 00 00

'0 CD 0 V0 V V a

%rCv to U)j NIV, U,) Cv, CY -i LO

- ''- '- '- N N4 C4 C4 C4 ~

l((0 0) wO C O co CO co C/) () cb ClO (1)

WS(4B)' 9

E
E
0

Im 0

0

E >:

cMY~~ cX %J,

cc- Ny N y CCJ, C JY INy-- CY-

'a V a0 D C

U) CO U) >y->

WS(4B). 10

MISSION

of

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C3 I) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C3I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intemaigence data collection and handing, solid state
sciences, electromagnet ics, and propagation, and electronic
reliability/maintainability and compatibility.

